
IoTaWatt Documentation
Release 02_03_20

Bob Lemaire

Mar 12, 2021

Contents:

1 Quickstart 1

2 Installation 3
2.1 Software vs. Hardware . 3
2.2 Components . 3
2.3 Voltage and Frequency . 3
2.4 Connections . 4

3 Connecting to WiFi 5
3.1 Purpose . 5
3.2 New connection . 5
3.3 Resetting WiFi to Defaults . 7

4 Device Configuration 9
4.1 Device name . 10
4.2 TimeZone . 10
4.3 Auto-update Class . 10

5 Voltage Transformer Configuration 11
5.1 VT Model Selection . 12
5.2 Voltage Calibration . 13

6 Configuring Power Channels (CTs) 15
6.1 What is a power channel? . 15
6.2 Connecting the CTs . 16
6.3 Configuring the Input Channels . 16
6.4 Generic CT . 19
6.5 Enable derived three-phase . 20

7 Device Status Display 21
7.1 Overview . 21
7.2 Inputs/Outputs . 22
7.3 Statistics . 22
7.4 Web Servers . 23
7.5 Data Logs . 23

8 Outputs 25

i

8.1 Adding a new Output . 25

9 Web Servers 31
9.1 Sending Data to a Web Service . 31
9.2 PVoutput . 32
9.3 influxDB . 32
9.4 Emoncms . 34

10 PVoutput 35
10.1 Create a PVoutput Account . 36
10.2 Add Your System . 36
10.3 Configure IoTaWatt . 36
10.4 Reload History . 38

11 Emoncms 39
11.1 Setup Emoncms . 39
11.2 Configure IoTaWatt . 39
11.3 Customizing Input data . 41

12 influxDB 43
12.1 Configure IoTaWatt . 43
12.2 tag-set . 45
12.3 measurements . 46
12.4 Variables . 47

13 Three-phase Power 49
13.1 Configuring Direct Reference . 49
13.2 Configuring Derived Reference . 51
13.3 Reporting Power . 53

14 CT Basics 55
14.1 What is a Current Transformer? . 55
14.2 Types of CTs . 55
14.3 Installation . 57
14.4 Polarity . 57
14.5 Single and three-phase systems . 57
14.6 Split-phase systems . 57
14.7 240V Split-phase circuits . 62

15 Split-Phase Installation 65
15.1 What is split-phase? . 65
15.2 Split-phase load centers . 65
15.3 Monitoring split phase . 65
15.4 Voltage Reference . 66
15.5 Mains CT orientation . 66
15.6 Load CT orientation . 67

16 Data Visualization 69
16.1 Graph+ . 69
16.2 Original Graph . 69

17 Graph+ 71
17.1 Unit/Source selector . 72
17.2 Time period selector . 74
17.3 Graph window . 76

ii

17.4 Trace tables and options . 77
17.5 Saving Graphs . 81
17.6 Running Directly with URL . 82
17.7 Reset . 82

18 Original Graph 83

19 File Manager and Editor 87
19.1 IoTaWatt file systems . 87
19.2 File Manager . 87
19.3 Downloading Files . 88
19.4 Uploading Files . 88
19.5 SPIFFS . 88
19.6 ACE Editor . 89

20 Query API 91
20.1 Overview . 91
20.2 Query types . 91
20.3 query?show . 91
20.4 query?select . 92
20.5 time specifiers . 94
20.6 Responses . 96

21 Message Log 99

22 Troubleshooting 101
22.1 Led Indicator . 101
22.2 Dull Green Glow . 101
22.3 Dull Red Glow . 101
22.4 Not Illuminated . 102
22.5 Continuous Red-Green-Red-Green. 102
22.6 Led Sequences . 102

23 iotawatt.local 105
23.1 How does it work? . 105
23.2 How does that not work? . 105
23.3 How to make it work better. 106
23.4 What else? . 106
23.5 The last word . 106

iii

iv

CHAPTER 1

Quickstart

So now you have your new IoTaWatt and can’t wait to hook it up and start monitoring - but you couldn’t find the
quickstart guide in the box. That’s because there is no quickstart guide per-se.

However. . . The first few topics that follow contain all you need to know about getting up and running, and will get
you going pretty quickly. Each step produces a result and at the end you will know how to do all of the basics.

So just press “Next” below and get started on the first topic.

1

IoTaWatt Documentation, Release 02_03_20

2 Chapter 1. Quickstart

CHAPTER 2

Installation

2.1 Software vs. Hardware

Strictly speaking, IoTaWatt began as a software project with no specific hardware platform in mind. That objective was
soon supplanted by an open hardware design based on the ESP8266. Typical IoTaWatt installations use a commercially
manufactured unit that is certified to UL and CE safety standards and complies with FCC requirements.

The IoTaWatt firmware is factory installed and can be automatically and securely updated over WiFi. This section of
the documentation deals with the physical installation of the commercial IoTaWatt unit with factory installed firmware.

2.2 Components

IoTaWatt has 15 input channels. One is reserved for monitoring voltage, and the remaining 14 can be used to monitor
power or voltage. The minimum requirements for operation are:

• IoTaWatt

• USB power supply

• AC voltage reference transformer

• Current Transformer (one or more)

2.3 Voltage and Frequency

IoTaWatt can work with all common line voltages at 50Hz/60Hz. Additionally, it can use multiple voltage references
for polyphase measurement. The most common environments are 120/240V 60Hz and 230V 50Hz. The USB power
supply and AC transformer must be appropriate for the power system.

3

IoTaWatt Documentation, Release 02_03_20

2.4 Connections

Setup is simple:

1. Connect the USB power supply to the 5V DC USB

2. Connect the AC transformer to the 9V AC REF

3. Plug the power supply and AC transformer into a wall socket

That’s it.

Next step: connecting to WiFi

4 Chapter 2. Installation

connectWiFi.html

CHAPTER 3

Connecting to WiFi

3.1 Purpose

When IoTaWatt powers up, it attempts to connect to the last WiFi network used. A connection must be established to
an internet connected network if the real time clock is not set, or to run the configuration utility, or if logging to an
external server like Emoncms is desired. It is strongly recommended to connect the IoTaWatt to a WiFi network with a
reliable internet connection.

If the power-up connection is successful, the LED will begin to glow dull green. This indicates that the IoTaWatt has
connected and is in normal operating mode. At this point you can skip ahead to the next section Device Configuration

3.2 New connection

If the IoTaWatt has never been connected to a WiFi network (new), or the last used network is not available, the
ESP8266 will enter AP (Access Point) mode when powered-up (not on a software restart). This state is indicated
when the LED flashes the three color sequence RED-GREEN-GREEN. It will broadcast an SSID recognizable by the
prefix iota followed by a unique number. Connect to it using a smartphone or tablet. Use the password IotaWatt
(case sensitive). If the device was previously configured and the device name was changed, that new name will be the
password required in this step.

After connecting, a page will be rendered with several choices. Select Configure WiFi.

5

devConfig.html

IoTaWatt Documentation, Release 02_03_20

A few seconds may elapse while the IoTaWatt scans for the local networks, then another page will be rendered allowing
you to select one of the listed networks, or specify another network not listed.

Note that the IotaWatt only supports 2.4 GHz wireless networks. If you have a 5 GHz only network you can either
enable 2.4 GHz on it, or create a separate (optionally hidden) network on 2.4 GHz for the IotaWatt to use.

6 Chapter 3. Connecting to WiFi

IoTaWatt Documentation, Release 02_03_20

Select your network and enter the password, then save. Once connected, the new WiFi network credentials will be
saved and the device will continue it’s startup procedure. If you see another LED sequence, refer to the troubleshooting
section.

When the LED glows dull green, proceed to the next step Device Configuration

3.3 Resetting WiFi to Defaults

If you wish to change the WiFi SSID that the IoTaWatt is connected to (you might have done some testing in the lab
and want to deploy ‘live’ somewhere where the SSID is different) BEFORE moving the device you need to reset the
WiFi.

In the URL bar of your browser type:

3.3. Resetting WiFi to Defaults 7

troubleshooting.html
devConfig.html

IoTaWatt Documentation, Release 02_03_20

> IoTaWatt.local/command?disconnect=yes

You could replace IoTaWatt.local with the IP address of your device.

After the command to disconnect the existing WiFi connection has been sent, IoTaWatt will respond “ok” and the LED
will change from a dull green to a dull red as the IoTaWatt disconnects, indicating that the WiFi link has been severed.

Then power cycle the IoTaWatt. It should restart with the RED-GREEN-GREEN led sequence like a new IoTaWatt
ready to connect to the new SSID

8 Chapter 3. Connecting to WiFi

CHAPTER 4

Device Configuration

Successful startup will be indicated by a dull green glow on the LED. If the LED is off, or blinking a sequence, see
the troubleshooting section.

After successful startup, you can connect to the device with your web browser to access the configuration app. Use the
url: http://iotawatt.local or, if your device has been renamed, use http://<newname>.local. The
configuration app starts with a row of buttons:

Hover over and click in the dropdown menu.

9

troubleshooting.html

IoTaWatt Documentation, Release 02_03_20

4.1 Device name

You can change the Device name to another 8 character name if you wish. If you have more than one IoTaWatt
you will need to do this so that they each have unique names. When you press save, the IoTaWatt will restart using the
new name. From then on, http://<newname>.local will be the url that you will use to access the device from
your browser, and the new Device name will be the password that you must use to connect to the AP if configuring
for a different WiFi network.

4.2 TimeZone

Set your local Time Zone relative to UTC time. All of the measurements are time stamped using UTC, but log
messages and various reporting apps will use this offset to show the data in local time.

If your time zone is subject to “Daylight Saving Time”, check the Allow Daylight Time box. IoTaWatt has
DST rules for most of North America, Europe, Australia and New Zealand.

4.3 Auto-update Class

Auto-update Class tells IotaWatt if you want to receive automatic updates of the firmware and what type of updates
you are interested in. The choices are:

NONE Do not Auto-update this device.

MAJOR Only update major releases of the software.

MINOR Update with minor releases. More frequent but somewhat tested firmware. This is
recommended.

BETA Latest production firmware.

ALPHA Recently released firmware with the latest features - and the latest bugs.

IotaWatt checks the IotaWatt.com site for new software regularly. The update process takes less than a minute. New
firmware is authenticated with a digital signature from IotaWatt and installed automatically.

4.3.1 Save

Click . Your changes will be saved. If you changed the name of your device, it will restart when you press save
and you will need to restart the configuration application from http://<newname>.local.

The next step is VT Configuration

10 Chapter 4. Device Configuration

messageLog.html
messageLog.html
VTconfig.html

CHAPTER 5

Voltage Transformer Configuration

A prime component of electrical power is voltage. The AC line frequency is the heartbeat of the IoTaWatt. A reliable
and accurate AC voltage reference is very important. You should have installed the device with a 9 Volt AC voltage
reference transformer (VT) plugged into the channel zero power jack. If your initial configuration has this channel
pre-configured, your LED will be glowing green because it’s rhythmically sampling that voltage.

Various transformer models produce different voltages, and it’s important to insure that the VT specified matches the
model that you have installed. To do this, select the inputs button in the Setup dropdown menu.

A list of all of the inputs will be displayed. The first entry will be input 0 and a default VT should be configured.
Check to see if it’s the same as your VT model. It’s OK to unplug the VT to check the model number printed on it.

If your VT model doesn’t match the model that is configured, you can easily change it. Click on the input channel 0
button on the left.

11

IoTaWatt Documentation, Release 02_03_20

As you can see, the display changes to reveal the details of the input_0 configuration.

5.1 VT Model Selection

If your make and model is listed, select it from the list. At this point, you can just click and the standard
calibration for your VT will be used. That calibration should be good for all but the most discerning users. If you have
access to a good voltmeter or other reliable high accuracy voltage reference, you can fine tune with the calibration
procedure below, but for average users, you should be good to go on to the next step Adding Power Channel CTs

If your VT wasn’t listed in the dropdown above, the generic entry is a reasonable starting point that will get you in the
ball park for your 9-12Vac adapter. If your country is 230V or 240V select “generic240V”. Now you must perform
the Voltage Calibration procedure below.

12 Chapter 5. Voltage Transformer Configuration

IoTaWatt Documentation, Release 02_03_20

5.1.1 TDC DA-10-09 model ambiguity

There are two different voltage transformers available with the model designation TDC
DA-10-09. These models are quite different and need to be properly configured.

Fig. 1: use model: TDC DA-10-09

Fig. 2: use model: TDC DA-10-09-E6

5.2 Voltage Calibration

Again, if you are using one of the standard voltage transformers from the
tables, this step is optional. Repeated random tests on the standard US and
Euro transformers yield excellent calibration right out of the box.

You will need a halfway decent voltage reference for this step. If you don’t
have a decent true RMS voltmeter and can’t borrow one, go out and get a
Kill-a-Watt. They cost less than $20 (some libraries lend them out) and I’ve
found their voltage readings are usually accurate.

click

5.2. Voltage Calibration 13

IoTaWatt Documentation, Release 02_03_20

Follow the instructions on the page. Increase or decrease the “cal” factor
until the voltage shown settles down and is a pretty good match with your
reference meter. It’s not possible to match exactly. 0.2V in a 120V installa-
tion is 0.2% variation. A good meter accuracy is 1% at best. Just try to get
the two to dwell around the same set of fractional digits.

As instructed on the page, click save to record the calibration factor. The new
calibration factor will take effect immediately. Click the Status menu button
to display the voltage:

Wait a few seconds then check that the voltage displayed is still in the ball
park. If not, repeat the calibration procedure.

Once calibration is complete and verified, you will not need to do it again unless you change your VT transformer.
The IoTaWatt has a very accurate internal calibration reference and will maintain its accuracy indefinitely. You should
have no further need for the voltmeter.

Now the device is ready for the next step Configuring Power Channel CTs

14 Chapter 5. Voltage Transformer Configuration

CTconfig.html

CHAPTER 6

Configuring Power Channels (CTs)

6.1 What is a power channel?

Power channels measure the current flow through a circuit and combine that with the reference voltage to determine
power, expressed in watts, and to accumulate energy used, expressed in watt-hours. Current through a circuit is
measured indirectly by installing a passive sensor, called a current transformer (CT), around one of the conductors in
the circuit. CTs come in a various capacities, physical connection type, and electrical output.

The good news is that IoTaWatt supports a wide variety of readily available CTs, and many can be configured simply
by selecting the model from a list. CTs are connected with 3.5mm stereo jacks (headphone jacks). The CTs that are
sold at the IoTaWatt stuff store are manufactured with 3.5mm jacks.

Fig. 1: Echun ECS16-100 CT

15

http://stuff.iotawatt.com

IoTaWatt Documentation, Release 02_03_20

6.2 Connecting the CTs

This tutorial does not cover physical installation of the CTs to your electrical circuits. That should be done by someone
familiar with electrical wiring. Your qualified installer will know how to do this. The 3.5mm connectors plug into any
of the 14 input channels on the IotaWatt.

The only additional recommendation is that all of the CTs be oriented the same way with respect to current flow. Most
CTs have an arrow or other marking to aid in consistent orientation. Not to worry, in the event some end up backward,
IoTaWatt will still work, will tell you which ones appear to be backward, and provides a way to correct virtually.

You can find more detailed information about physical installation of CTs in the CT Basics section.

6.3 Configuring the Input Channels

At this point, you should have the IoTaWatt up and running with the voltage channel connected, configured, and
calibrated if necessary. You are using the config app in a browser connected to your WiFi network. Hover over

and click in the dropdown buttons.

This screen should look familiar. We came here to configure the voltage transformer (VT). Now we will configure
current transformers (CTs) to other inputs. To add or edit the CT specification for an input channel, click the channel’s

number button. Let’s add a CT to channel .

16 Chapter 6. Configuring Power Channels (CTs)

CTbasics.html

IoTaWatt Documentation, Release 02_03_20

The app enters channel edit mode. Here you specify the model and other details about the CT connected to this
particular channel. But first, it is helpful to name the channel by typing a name in the name box. You can just use the
default “Input_1” or something more meaningful like “Kitchen” or “Living Room” or “Main”. We will configure one
of our US 120/240V split-phase mains as main_1.

The default type is CT and that’s correct.

The next drop-down box is the model of the CT. Initially it will be generic, Click the drop-down list and select the
ECS24200 CT.

6.3. Configuring the Input Channels 17

IoTaWatt Documentation, Release 02_03_20

Notice that after selecting a specific device from the table, the input fields for “turns” and “phase” disappear. That’s
because those values are known for the listed CTs. If you have a CT that is not found in the list, you will need specify
the “generic” entry and provide the turns-ratio and phase-lead for that CT. see generic CT below.

There are check-boxes to further configure the CT. Most of the time, these will not be used, but there are circumstances
where you would check one or more of them. If you hover on the ! next to each, a brief description will appear. They
are explained below:

Allow negative power value This is typically checked only for mains in an installation with grid-tied solar (net-
metering). Checking this box tells IoTaWatt that it is normal for current to flow backward through this circuit,
as when a PV system creates more power than you are using locally and the balance is “exported” to the grid.
When you check this box you are affirming that the CT is installed correctly and that negative power should not
be automatically “corrected” to positive.

Double In North American split-phase power systems (120V/240V), all circuits are assumed to be 120V. When this
option is selected, power will be computed using double the value of the reference voltage, or nominally 240V.
Use this for 240V circuits where one CT has been applied to one of the conductors and there is no neutral (white)
wire used by the appliance. Typical circuits would be Water Heater, Water Pump, Mini-Split Heat-Pump. There
are other ways to monitor 240V circuits as well.

Reverse Sometimes a CT is installed backwards with respect to normal current flow. IoTaWatt will sense this and
correct automatically in single-phase power systems. It will correct the negative value automatically and indicate
so in the status display with a little symbol. Selecting this option will virtually reverse the CT as if it were
oriented correctly, obviating the need to physically reverse it. Doing so can be safer and/or easier, especially
with solid core CTs. While merely convenient for single-phase systems, correct orientation is a necessity in
three-phase installations because the IoTaWatt cannot automatically sense a reversed CT and correct for it.

Press to finish.

18 Chapter 6. Configuring Power Channels (CTs)

IoTaWatt Documentation, Release 02_03_20

That’s it. The screen returns to the complete list of inputs where you can add more channels or change the configuration
of existing inputs. Each time you press save, the new configuration is sent to IoTaWatt and the changes take effect
immediately. If the CTs are installed and connected, you will can see the power displayed in the Input Channel Status
screen.

When you have configured all of the CTs connected to the IoTaWatt, basic configuration is complete. Click the

button to see the IoTaWatt in action.

The following additional information may provide guidance for more advanced installations.

6.4 Generic CT

We just configured a Current Type CT that was of a model known to IoTaWatt. If your particular CT is not one of
the dropdown models, you will need to describe the generic parameters. You will recall that this is the initial model
designation for a CT when a new channel is added. Its also a drop-down choice when editing a CT channel. With this
model selected, you must specify additional information depending on the type of CT:

6.4.1 Current Type CT

Current type CTs are the most common type of CT used with IoTaWatt and all of the CTs available in the IoTaWatt
Stuff Store are of this type. They are typically described by the ratio of the maximum primary current that they can
measure and the corresponding secondary current that will be produced, as in 200A:50mA. For these CTs, you will be
asked to specify the “Turns:”. This is the ratio of primary current/secondary current. So that 100A:50mA described
above would be 100/.050 = 2000 turns.

6.4.2 Voltage Type CT

Voltage type CTs are typically described with an output in volts (V) and have an internal burden resistor that causes
them to produce an output voltage rather than current. They are connected to a modified IoTaWatt input that has had
the internal burden resistor removed and specified as zero in the device configuration burden menu. IoTaWatt will ask
for a Cal factor. This is the primary current in amps that corresponds to 1 volt of output from the CT. An example of
this is the SCT013-050 from YHDC. It is marked 50A/1V, so the Cal is 50. Simple enough.

6.4.3 Phase

Both of the generic CT types above will also provide a place to specify Phase. Representative samples of the CTs in
the model list have been tested to determine a phase correction value to compensate for phase shift of the transformer.
If you have a generic CT a rule of thumb would be to use 2.0 for a split core CT (one that snaps onto a wire), and 0.2
for solid core CTs (Basically a solid doughnut that you pass the conductor through).

6.4. Generic CT 19

status.html
status.html

IoTaWatt Documentation, Release 02_03_20

6.5 Enable derived three-phase

This checkbox enables advanced features used to configure inputs in a three-phase power system. Refer to the section
Three Phase Power for more information.

20 Chapter 6. Configuring Power Channels (CTs)

threePhase.html

CHAPTER 7

Device Status Display

7.1 Overview

The configuration app can provide a continuously updating display of many aspects of IoTaWatt operation.
The output is organized into expandable tabs containing various categories of information. Simply click the

button.

The initial display will always have the Inputs/Outputs Status tab expanded. Simply clicking on that tab, or any of
the other tabs, will toggle them between expanded and collapsed. The various tabs as of this writing are detailed as
follows:

21

IoTaWatt Documentation, Release 02_03_20

7.2 Inputs/Outputs

This tab lists all of the configured input channels on the left, and all of the defined outputs on the right. Both columns
show the current measurement value. Input channels values are in Watts or Volts for CT and VT channels respectively.
CT channels also will display the power-factor (PF) when the power is sufficient to develop that reliably. Output
channel values are in the units configured. They may be Volts, Watts, Amps, VA, Hz, or PF. All values are damped,
which is to say they are averaged with an exponential decay algorithm so that they will not jump around excessively.
That said, the algorithm does respond to large changes quickly and settles in on small changes within a few seconds.

7.3 Statistics

The statistics tab provides insight into the current operation of the IoTaWatt with the following information:

• Firmware version: Release of IoTaWatt firmware.

• Running Time: Since last restart.

22 Chapter 7. Device Status Display

IoTaWatt Documentation, Release 02_03_20

• free Heap: An indication of the working memory available to the firmware.

• Samples per AC cycle: Average samples IoTaWatt is achieving when sampling a channel.

• AC cycles sampled/second: Average number of channels that are measured per second.

• Hz: Current AC frequency.

7.4 Web Servers

These tabs appear when data upload to PVoutput, Emoncms, influxDB has been configured. They indicate the state of
the services that are responsible for sending the data to the respective server.

Start/Stop button: Use to pause and resume uploading data. This button works asynchronously, and may
take awhile to perform the action. Pressing multiple time may cause it to go out of sync. Use it carefully.

Running/Stopped: The current state of the service.

Last Update: Data/time of the last data sent to the server.

7.5 Data Logs

This tab displays the date/time of the first and last entry in both the Current Log and the History Log. These dates may
take a few seconds to become accurate as the IoTaWatt starts. The History Log should begin from the data/time when
the IoTaWatt was first installed, or when the History log was last created after being deleted. It should increment every
minute while the unit is running.

The Current Log contains up to a year’s worth of data, and maintains that data at 5 second resolution. When the
approximate year capacity is reached, it will “wrap” back around and begin writing over the oldest entries. Newer logs
will show the same start date as the History Log. As the log ages and reaches capacity, the start date/time will advance
at 5 second intervals along with the ending date/time.

7.4. Web Servers 23

webServer.html

IoTaWatt Documentation, Release 02_03_20

24 Chapter 7. Device Status Display

CHAPTER 8

Outputs

Outputs provide useful values that are computed from input channel values using a calculator like interface. For
instance, in a typical US installation, there are two MAIN circuits, the sum of the two is the total power into a panel.
Its nice to know at a glance what that total is, but the two mains are measured separately using two input channels. We
need a way to add them together to display the total usage.

Hover over and click in the dropdown buttons.

This screen will list any outputs that you have already configured, and allow you to click to create new ones.

You can click on existing outputs to change or delete them. There is no practical limit to the number of outputs
that you may create. The only requirement is that they be uniquely named.

8.1 Adding a new Output

So lets click :

25

IoTaWatt Documentation, Release 02_03_20

This is the calculator interface that IoTaWatt uses to specify how to calculate an output using input channel values.
A script is created that IoTaWatt uses to compute the value when needed. It works just like the simple four function

calculators we are all used to, and using the key, you can select input channel values to be used in the
formula that you are creating. The resulting expression is evaluated left to right, with calculations within parenthesis
evaluated before being used.

So lets make an output channel that combines two main inputs called main_1 and main_2. We enter the name to-

tal_power in the Name: box and hover over the button of the calculator to see a list of the inputs.

26 Chapter 8. Outputs

IoTaWatt Documentation, Release 02_03_20

Select main_1 from the list and it will appear in the calculator formula display. Next click on the , then
repeat the input process selecting Main_2.

8.1. Adding a new Output 27

IoTaWatt Documentation, Release 02_03_20

Easy as that. Now press to return to the outputs list. Your new output should appear within a second or two.

Now go back to the Channels Status screen and see that the new output channel is listed and indeed has a value that is
the sum of the two inputs main_1 and main_2.

28 Chapter 8. Outputs

IoTaWatt Documentation, Release 02_03_20

Some other useful outputs would be:

• Power used in a solar PV system, calculated by adding the Solar inverter input to the (signed) Main input. If for
instance the inverter were putting out 4500 watts and your Main(s) indicated an outflow represented as -3100
watts, local usage would be 1400 watts with 3100 watts exported.

• Where the Main(s) are monitored and selected circuits within the panel are also measured, you can create an
output that shows the aggregate unmeasured usage by subtracting the measured inputs from the Mains as the
misc output in the status display above. That output is defined:

8.1. Adding a new Output 29

IoTaWatt Documentation, Release 02_03_20

30 Chapter 8. Outputs

CHAPTER 9

Web Servers

9.1 Sending Data to a Web Service

As a standalone unit, IoTaWatt is a very capable data logger with an integrated web server/API interface that can
provide real-time as well as historical data, using the provided graph interface, or otherwise to any web connected
client. That said, there are limitations in that queries can take several seconds and the web server currently works with
locally connected clients on the same WiFi network and requires port forwarding and dynamic DNS to access from
outside. There is also a chance that the local datalogs could be lost along with all of the accumulated history and there
is no local backup capability yet.

There are cloud based services available that will store uploaded data logger information and present that data to client
applications across the internet. Some of those databases can also be installed on a private server hosted by anything
from a Raspberry Pi to a commercial hosting service. IoTaWatt has the capability to upload selected data while still
maintaining all of its own local logging and reporting capabilities.

When one of these services becomes unavailable for any reason, IoTaWatt will upload the backlog when service is
restored, whether that backlog is a minute or a month.

IoTaWatt can support multiple upload services simultaneously, so it’s not necessary to sacrifice uploading to an in-
fluxDB database in order to participate in the PVoutput project.

To initiate configuration of any web server, hover over and select

.

31

IoTaWatt Documentation, Release 02_03_20

click the Web Service: dropdown and select a server you would like to use from the dropdown list. Each service is
designated as

• (add) - New service specification

• (edit) - modify existing service configuration (including delete)

When you select a server, the configuration menu for that particular server will appear. For details of configuring each
unique server type, click on the heading of the corresponding section below.

9.2 PVoutput

PVOutput is a free online service for sharing and comparing photovoltaic solar panel output data. It provides both
manual and automatic data uploading facilities.

Output data can be graphed, analysed and compared with other PVoutput contributors over various time periods. The
ability to compare with similar systems within close proximity allows both short and longer term performance issues
to be identified.

While pvoutput is primarily focused on monitoring energy generation, it also provides equally capabable facilities to
upload and monitor energy consumption data from various energy monitoring devices.

Both solar generation and energy consumption data can be combined to provide a live ‘Net’ view of energy being
generated and consumed.

9.3 influxDB

influxDB is a free industrial strength, open-source, schema-less time series database. It is fast, efficient and scalable.
You can install on a Raspberry Pi, a home server, or a commercial web host site.

There are several excellent visualization packages that can be used to visualize and report the data.

32 Chapter 9. Web Servers

IoTaWatt Documentation, Release 02_03_20

Fig. 1: PVoutput Graphic Display

Fig. 2: grafana dashboard with influxDB

9.3. influxDB 33

IoTaWatt Documentation, Release 02_03_20

9.4 Emoncms

Emoncms is another open-source time series database that was specifically designed to handle energy monitoring data
with robust set of visualization tools.

Fig. 3: An Emoncms Dashboard

Like influxDB, it can be local hosted on almost any machine, including Raspberry Pi, but also is available as a relatively
inexpensive pay-as-you-go cloud service at emoncms.org.

34 Chapter 9. Web Servers

CHAPTER 10

PVoutput

PVOutput is a free service for sharing, comparing and monitoring live solar photovoltaic (PV) and energy consumption
data. It is a worldwide catalog of installed PV sites containing details of location, output, capacity, and efficiency.
Individually, you can maintain data about the production of one or more sites along with voltage and consumption
data. There is also an ability to use the service to capture and report up to six additional data items with the ability
to generate real-time alerts based on simple rules. IoTaWatt supports uploading in both the basic free mode and the
extended donator mode.

But you don’t need to have solar generation to use the service. You can use it to upload consumption and voltage, as
well as six more data sets in donator mode. So lets look at how to set this up with IoTaWatt.

35

https://pvoutput.org/about.html

IoTaWatt Documentation, Release 02_03_20

First, you should review the local time offset specified in your IoTaWatt. IoTaWatt synchronizes with PVoutput using
local time, including daylight time where applicable. In the Setup/Device display of IoTaWatt, set the time offset for
your local standard time, then if your locale observes daylight time (or summer time) check the Allow Daylight Time
box.

10.1 Create a PVoutput Account

From your browser, follow the register link on the PVoutput.org login page or just click here. Enter a login ID,
password, your email to setup an account, then go to the settings page. Go through the items and select what is
appropriate for your locale in terms of date/time format, decimal characters etc. Pay particular attention to the timezone
setting. Your account must match the local time setting of your IoTaWatt. Click Save at the bottom and your account
is setup. Note that this page is where you will find your API Key, which is one of the few things you will need to
specify in the IoTaWatt setup.

10.2 Add Your System

Now click on the Add System link under Registered Systems at the bottom of the page. You really don’t need to enter
much here to get started. The System Name should be something meaningful to you, but if you want to allow your PV
data to be public, you might consider using a something that is not personally identifying. If you have no solar, you
can check the Energy Consumption Only box. If you have solar and you fill in the details about your setup, PVoutput
will report your efficiency and be able to compare it to similar systems.

Under Live Settings, set the interval to 5 minutes and double check that the timezone matches what you have set in
IoTaWatt. Click Save. Note the System ID. IoTaWatt will need to know that.

10.3 Configure IoTaWatt

It’s time to configure IoTaWatt to upload to the new account. From within the IoTaWatt configuration app, click
Setup/Web Server and then select PVoutput from the dropdown menu.

36 Chapter 10. PVoutput

https://pvoutput.org/register.jsp

IoTaWatt Documentation, Release 02_03_20

Copy and paste the API Key and System Id from the PVoutput system page. For now, set upload history from to a
recent date like yesterday. Do not check the Reload History box.

All that’s left is to specify the data to upload. Under Status Outputs, click .

As you can see, it’s the standard calculator/script interface. The illustration shows the dropdown menu associated with
the name. There are nine data items that can be uploaded. Of the nine, generation, consumption, and voltage are

10.3. Configure IoTaWatt 37

IoTaWatt Documentation, Release 02_03_20

standard. The six extended_1(v7) through extended_6(v12) entries are additional data that can be uploaded in donation
mode. At a minimum, you will need to configure either generation, consumption or both.

generation Specify this if you have a solar PV system. Select the IoTaWatt input that measures your inverter output.

consumption This is the amount of power you use. There are two general cases for this depending on where the solar
power is introduced into your system.

• If the inverter feeds in before the mains breaker, then consumption is simply the value of your mains:

(main_1 + main_2)

• If the inverter feeds in after the mains breaker, i.e. into a breaker inside your panel, then your consumption
is the sum of the mains and the solar:

(main_1 + main_2 + solar) max 0

voltage PVoutput will record and plot your voltage. Most users will simply use the channel_0 voltage input for this.

extended_1(v7) - extended_6(v12) These are the extended values that you can record when you make a donation to
PVoutput. Some of the PVoutput documentation refers to then as extended_1 through extended_6, other places
they are called v7 through v12. They are the same.

When all of the outputs are specified, click . The PVoutput service will start and uploading will begin. You can
monitor the progress in the PVoutput tab of the Status display.

10.4 Reload History

PVoutput allows reloading of historical data subject to lookback limits and maximum transaction rates. Once you are
confident that your configuration is correct and uploading what you want, you can upload whatever historical data may
be in your data logs. To do this, select the date that you want to begin from, and click the Reload History box. When

you press , the reload will begin.

If necessary, the starting date will be adjusted to coincide with the contents of the data log. Up to 14 days of history
can be uploaded in free mode while donator mode allows 90 days.

Large history uploads may pause due to hourly transaction limits imposed by PVoutput. The message log will indicate
these pauses and when to expect resumption.

When the reload is complete, you must reset the reload history checkbox manually, or the data will reload after every
restart.

38 Chapter 10. PVoutput

CHAPTER 11

Emoncms

11.1 Setup Emoncms

Emoncms is an open-source system that stores time-series data and has multiple reporting apps developed by the
authors as well as apps contributed by users in the open community. The graph application used locally by IoTaWatt
is a derivitive of that effort.

For a nominal fee you can use the managed enterprise version of Emoncms at Emoncms.org or you can install the
software on your own machine, including a RPi, and run a local instance for free.

Configuring an IoTaWatt to upload to Emoncms is easy. First, go to Emoncms.org and establish an account, or install
the software on your server and setup an account. There is a nominal fee to use Emoncms.org that should amount to a
few dollars per month for a typical IoTaWatt user.

11.2 Configure IoTaWatt

After establishing an account, run the IoTaWatt configuration application, hover over

and click from the dropdown menu.

Choose Emoncms.

39

IoTaWatt Documentation, Release 02_03_20

Here you will specify how IoTaWatt is to upload its data to Emoncms.

Node Grouping that you want to assign to all data upload from this IoTaWatt to distinguish it from data uploaded
from any other devices that you may have. It is somewhat arbitrary and defaults to the name of your IoTaWatt
device.

post interval Number of seconds that each data point will represent. The tradeoff is between higher resolution (small
interval) and minimizing the storage requirement of the data over time (larger interval). IoTaWatt accepts any
value from 5 seconds to 3600 seconds (1 hour), in 5 second increments. Because of the way Emoncms reports,
it’s best to use a number that is an even factor or multiple of one minute: 5, 10, 15, 20, 30, 60, 120, etc.

bulk send Number of interval postings to aggregate into a single posting request. Specifying 1 will send a data packet
to Emoncms at each interval. If your interval is 5 or 10, it will send a packet every 5 or 10 seconds. That’s fairly
inefficient and can be problematic when there are internet connectivity issues. By specifying a larger bulk send,
IoTaWatt will aggregate the posting data for that many intervals and send the data in one packet. For instance

40 Chapter 11. Emoncms

IoTaWatt Documentation, Release 02_03_20

if your interval is 10 seconds, specifying bulk send = 3 will cause data to be sent every 30 seconds. Large bulk
send values will cause any real-time dashboards in Emoncms to update less frequently, so you should strike a
balance. IoTaWatt keeps all of the data in local storage, so there is no risk of losing data by using this feature.
Should there be any failure to deliver, IoTaWatt will pick up with the last successful posting when the problem
resolves itself.

upload history from When starting a new Emoncms node, you can specify a date from which to upload historical
data. To the extent that the data is available in the local datalog, IoTaWatt will bulk upload the historical data
to Emoncms. The bulk upload can take anywhere from several minutes to a day or more depending on the
time-frame and the upload speed. Regardless, the historical upload is done in the background and will not
significantly affect normal operation.

server URL URL of the Emoncms server. If using the Emoncms.org server, the default to the Emoncms.org site,
but the software is open, so you may maintain your own server (software on GitHub) or you may buy one
of the OpenEnergyMonitor.org products that run a version of the software on a raspberry-pi. When using
a local instance of Emoncms, you can use the IP format with optional port number. An example might be
192.168.0.112:80/emoncms.

api key A 32 character hexadecimal key to authorize posting to an account. Once you establish your account, locate
the read-write api key and copy/paste into this field.

Emoncms userid By specifying this optional value, you instruct IoTaWatt to use a secure encrypted protocol to send
data to Emoncms. There is no downside to doing this, and it is recommended. Your userid is a four or five digit
number located in the “My Account” section of the Emoncms.org site.

Now click and IoTaWatt should begin sending data to your Emoncms account. You can see the status of the
Emoncms service in the Status Display

IoTaWatt uploads the current voltage or power corresponding to all of the input channels in each post. You can
configure Emoncms (follow their instructions on the website) to save only what you want to keep in “feeds”. Setting
up and configuring the Emoncms account is documented on the Emoncms.org site.

11.3 Customizing Input data

You can customize the data that is sent to Emoncms using the Emoncms Inputs list at the bottom of the configuration
screen. This list is very similar to the Configure Outputs section, except rather than calculate named values that can
be viewed in the status screen or displayed in the graph application, you specify how to calculate the individual inputs
to Emoncms using the same calculator interface.

Initially, these fields correspond to each of the IoTaWatt inputs. By editing this list, you can change the values that are
sent, delete specific values, or add additional computed values to be sent.

One distinctive feature of this list vs the outputs list is that the names must be numeric values between 1 and 99. The
name of an entry corresponds to the Emoncms input “key” value. When editing the various fields, if you add a new
entry with the same number as an existing entry, or change an entry to the same number as an existing entry, it will
replace the existing entry. Each time you save an entry, the list will be reordered.

11.3. Customizing Input data 41

status.html#web-servers

IoTaWatt Documentation, Release 02_03_20

42 Chapter 11. Emoncms

CHAPTER 12

influxDB

influxDB is a fast open-source time-series database package. It can run on a variety of platforms and is also available
as a managed, fully hosted service, from several vendors. As part of their “TICK” stack, InfluxData provides tools to
facilitate collecting data from a variety of sources, as well as tools for infrastructure monitoring, alert management,
data visualization, and database management. The popular grafana visualization tools also work well with influxDB.

IoTaWatt fully supports the influxDB HTTP API for sending data to influxDB at a specific interval of 5 seconds to one
hour. Like other similar IoTaWatt services, continuity of updates is maintained despite outages that may interrupt the
communications.

This tutorial assumes you have established your own instance of influxDB or subscribed to a hosted service. It does
not attempt to explain how to install or use influx or any of the related visualization tools. There’s a whole universe of
enthusiastic users at the influxData forum, where you can get help with anything and everything.

12.1 Configure IoTaWatt

To configure the influxDB upload service in IoTaWatt, Hover over and

click from the dropdown menu.

Choose influxDB.

43

IoTaWatt Documentation, Release 02_03_20

Here you specify what you want IoTaWatt to upload.

post interval Number of seconds that each data point will represent. The trade-off is between higher resolution (small
interval) and minimizing the storage requirement of the data over time (larger interval). IoTaWatt accepts any
value from 5 seconds to 3600 seconds (1 hour), in 5 second increments. Although not a strict requirement, it’s
best to use a number that is an even factor or multiple of one minute: 5, 10, 15, 20, 30, 60, 120, etc.

bulk send Number of interval postings to aggregate into a single HTTP request. Specifying 1 will send a data packet
to influxDB at each interval. If your interval is 5 or 10, it will send a packet every 5 or 10 seconds. That’s fairly

44 Chapter 12. influxDB

IoTaWatt Documentation, Release 02_03_20

inefficient and can be problematic when there are internet connectivity issues. By specifying a larger bulk send,
IoTaWatt will aggregate the posting data for the specified number of intervals and send the data in one packet.
For instance if your interval is 10 seconds, specifying bulk send = 6 will cause data to be sent every 60 seconds.
Large bulk send values will cause any real-time dashboards to update less frequently, so you should strike a
balance. IoTaWatt keeps all of the data in the SD data log, so there is no risk of losing data by using this feature.
Should there be any failure to deliver, IoTaWatt will pick up with the last successful posting when the problem
is resolved.

server URL URL of the influxDB server. The URL must begin with http:// (not https://). The url may contain a
domain name or an IP address. The :port number is optional and defaults to the influxDB default of :8086.

database Name of the influxDB database that you have created to be the repository for the IoTaWatt data.

retention policy Optional name of the influxDB retention policy that you want to associate with the measurements
that are written to influxDB. If not specified influx will use the default policy. If you specify a retention policy,
it must be defined to influxDB before data can be written.

username/password Optional security credentials. If specified, IoTaWatt will use standard authorization headers
with these credentials.

upload history from Specify the starting date that IoTaWatt will use to upload history to a new set of measurements.
When the influxDBService starts, a query is made to determine the date/time of the last data written, qualified
by the first tag-set. Data upload is initiated as follows:

Condition begin date specified begin date not specified
new measurement set begin date 00:00 current date/time
existing measurement set greater of last entry date/time or begin date last entry date/time

measurement Name that you assign to the measurements that IoTaWatt will be posting. The specification can be
a constant string, or can include variables as explained below under variables. Note that if not specified, the
variable $name will be used.

12.2 tag-set

tag-set A collection of optional user specified tag-key/tag-value pairs that will be included as part of each measure-
ment. The influx documentation somewhat explains them here. Basically, these tags each produce a table index
that can be helpful in increasing the performance of data retrieval. The first tag-set is a special case for IoTaWatt,
and if specified, is used to uniquely identify the measurement subset from this device so that upload can resume
seamlessly. If this is not the only device that will be posting to the database, a unique identifier for this device
should be included as the first entry in a tag-set. tag-values can be a constant string or can include variables as
explained below under variables

edit an existing tag by clicking on it’s associated edit button, or add a new one with the add button. add tag-set

12.2. tag-set 45

http://
https://

IoTaWatt Documentation, Release 02_03_20

field-key Each measurement contains a field key and field value. The field value is always the value specified in
the “calculator” function. The field key to be used is specified here. It can be a constant string or can include
variables as explained below under variables. If not specified, the default field key in each measurement is the
string ‘value’.

12.3 measurements

measurements The set of *measurement*s that will be sent at each interval. The editor uses the “calculator” interface
to create scripts to generate data using the various IoTaWatt inputs. Each entry will generate a measurement
using the influx line protocol:

<measurement>[,tag-key1=tag-value1[,tag-key2=tag-value2...]] field-key=field-
→˓value time

Note that measurement, tag-value, and field-key are specified above and can be fixed strings or can be or contain
variables. Some examples of the various ways this can be used to create different types of measurement specifications
are given below.

As each measurement is written the $name and $units variables are assigned the value specified in the individual
measurement specification.

The units of the field set defaults to watts. While Watts is the typical unit reported, the following additional units are
available.

• watts

• volts

• VA

• pf

• Hz

• kW

• wH

46 Chapter 12. influxDB

IoTaWatt Documentation, Release 02_03_20

• kWh

Once configured, a new influx service will be created. The current state of the service and the date/time of last update
will be displayed under the influxDB tab in the status display.

influx status bar

The service can be started and stopped using the start/stop button. When a running influx service is changed, the
service is automatically stopped and restarted.

12.4 Variables

Variables provide a way to further customize the way data is organized in your influxDB database. This tutorial will
not get into the implications of different conventions, except to say that future generic visualization templates may be
based on using the default specifications for measurement and field key.

There are three variables defined:

• $device - The name assigned to this IoTaWatt device in the device configuration section.

• $name - The name specified for the current measurement

• $units - The units specified for the current measurement

When these variables appear as all or part of the string specified for measurement field key or a tag value, the instance
of the variable name is replaced by it’s value. Evaluation proceeds left to right in a string.

So as an example, when generating a measurement configured as:

with a device name of IotaHome and the current value of the input solar of 2944.6, the following different measure-
ments could be generated:

measurement tag-value field-key measurement sent to influxDB
$name value solar value=2944.6 1523810195 (This is the default)
$units $device $name kWh,tag1=IotaHome solar=2944.6 1523810195
$device $name $units IotaHome,tag1=solar kWh=2944.6 1523810195
$name.$units value solar.kWh value=2944.6 1523810195
power $device.01 $name power,tag1=IotaHome.01 solar=2944.6 1523810195

12.4. Variables 47

IoTaWatt Documentation, Release 02_03_20

48 Chapter 12. influxDB

CHAPTER 13

Three-phase Power

IoTaWatt has the capability to measure power in polyphase systems. In the interest of keeping the user interface simple
for the majority of users with single phase power, the details are disguised and/or hidden until needed. There has been
a lot of interest in using IoTaWatt for three-phase monitoring, particularly in three phase countries like Australia and
Germany. For home energy monitoring, the derived reference method is very popular.

This chapter explains two methods for measuring a so calld “four wire” or “wye” system, by far the most common im-
plementation of three-phase. IoTaWatt can also be used with “three wire” or “delta” systems using different methods.

As explained in the introductory single phase section, a voltage reference is needed to measure real power. The
challenge with three-phase power is to obtain three different voltage/phase reference signals. IoTaWatt can do this by
two different methods:

Direct Reference uses three discrete voltage transformers or VTs, each one plugged into a circuit on a
different phase. The primary advantage is voltage accuracy, while the disadvantages are that the extra VTs
add cost, require using two of the inputs, and require plugs on each phase in proximity to the IoTaWatt.

Derived Reference uses a single voltage transformer and derives a reference voltage/phase for the other
two phases by numerically shifting the phase of the single reference by 120° or 240°. The primary
advantage is low cost and convenience of installation. The disadvantage is that large variations in voltage
between phases may result in decreased accuracy.

13.1 Configuring Direct Reference

13.1.1 Connecting additional VTs

To use Direct Reference three-phase power measurement, it’s necessary to install two additional VTs (total of three),
and to plug each of them into a receptacle that is supplied by a unique phase.

Version 5 of IoTaWatt, available second quarter 2019, will have native plugs to connect the additional VTs. This
tutorial will assume you have the new version 5 IoTaWatt.

The additional VTs will plug into two sockets at the rear of the unit. They are labelled VT-13 and VT-14. When these
are used, the standard channel 13 and 14 jacks should not be used.

49

IoTaWatt Documentation, Release 02_03_20

13.1.2 Configuring the voltage inputs

Now the additional VTs can be configured and calibrated. Do this in the same way that the first VT was configured.
Click the channel number, click “VT” then specify the model. Click Calibrate and calibrate the voltage to match your
reference. It’s not necessary that the VTs be plugged into their eventual phase for this step. If you have two outlets
on any of the phases, use those to plug in each VT in turn along with a voltage reference while you calibrate. Once
calibrated, the VTs can be moved to the appropriate phase/socket.

Name each of the phases to uniquely identify each reference. You can use phase_A, phase_B etc., or maybe use the
color coding of your system to be more descriptive - voltage_red, voltage_black, voltage_blue (US).

50 Chapter 13. Three-phase Power

IoTaWatt Documentation, Release 02_03_20

13.1.3 Configuring the CTs

Now start adding your CTs. The twist here is that because more than one VT is configured, an additional selection
box is displayed to specify which VT is associated with the phase of that particular CT.

If your service is consistently color coded, you should know the phase by the color of the conductor that you clamp
the CT onto.

13.2 Configuring Derived Reference

Another way to approach the voltage reference problem in three-phase is to use the voltage/phase reference of one
phase to derive a reference signal for the other two. While not as exact, this method can produce good results. The
IoTaWatt numerically shifts the single voltage/phase reference by 120° or 240° to measure power on the additional two
legs. Using this method, a three-phase system can be monitored with a single VT, just as with single-phase systems.

This chapter explains how to configure IoTaWatt to use “Derived Reference”. It’s pretty straightforward.

13.2.1 Configure the VT

Set up your IoTaWatt with the voltage reference VT on whatever phase of the three-phase is convenient. We will call
that phase A. This is important:

However you identify your physical phases, IoTaWatt always identifies the phase that the VT is connected
to as phase A.

The other two virtual phases will be phase B and phase C. It doesn’t matter where which of the physical phases your
VT is connected to. Your starting point is always A.

There are color coding schemes for the phases, but they vary so widely that I’m not going to try to reconcile this
scheme with any of them. That exercise is left to the reader. The good news is that you really don’t have to know what
any of the phases are to complete this setup.

13.2.2 Configure the CTs

Connect CTs to each of the circuits that you want to measure, and configure them as described here.

Be sure to orient all of the CTs the same way with respect to source and load.

13.2. Configuring Derived Reference 51

IoTaWatt Documentation, Release 02_03_20

The following instructions will not work as described if any CTs on the derived phases are reversed.

If you’ve done everything correctly, your IoTaWatt status display should be displaying the correct power for all of the
circuits on phase A, and roughly half power for all of the circuits on phases B and C.

Now in the input configuration menu, click the box for “Enable derived three-phase” at the bottom.

The configured input channels should now have “phase:A” appended to their descriptions. Go to the status display
and evaluate which of the inputs appear to be showing power that is half what is expected. Note them and go back
to the input configuration screen. If you know the relative phase of your circuits, you can just specify them now and
fast-forward over this “trial and error” approach that follows.

Edit each of the incorrect inputs in turn, changing the “Mains Phase” to phase B.

52 Chapter 13. Three-phase Power

IoTaWatt Documentation, Release 02_03_20

Now go back to the status display and see which inputs still appear to be about half of the expected value, go back to
the input menu and change those to phase C.

The status display should now indicate the correct power for all of the phase.

This procedure works best when the loads are substantial and have high power factors.

One additional point. Once you configure inputs to indicate mains phase B or C, the “Enable derived three-phase”
checkbox will remain set and cannot be turned off until all of the inputs are reconfigured back to phase A.

13.3 Reporting Power

Once all of the VTs and CTs are configured, there are several ways to view the power used. For circuits and/or loads
that use only one phase, the power value displayed for that channel should be correct as is. If there are devices that use
two or three of the phases, you must add the power from each of the phases to get total power. For each such device,
define an output channel and use the calculator to specify adding the component channels. If you are reporting the data
to a server, the data can be tailored with the calculator to send the single combined aggregate power for those devices.

13.3. Reporting Power 53

IoTaWatt Documentation, Release 02_03_20

54 Chapter 13. Three-phase Power

CHAPTER 14

CT Basics

14.1 What is a Current Transformer?

From Wikipedia:

A current transformer (CT) is a type of transformer that is used to measure alternating current (AC). It
produces a current in its secondary which is proportional to the current in its primary.

In our case, the primary is one of the conductors of the circuit that we want to measure, and the secondary is the output
jack that plugs into the IoTaWatt.

So without connecting anything directly to any high-voltage wiring, it’s possible to get a scaled down measure of the
primary current that can be used to passively measure power (Watts) of a circuit.

14.2 Types of CTs

CTs come in various types, sizes, and capacities, and are made for a variety of end uses. This tutorial doesn’t try to
address all aspects. That’s what Wikipedia does well. Here we’ll try to focus on the CTs that are suited to use with the
IoTaWatt in typical scenarios.

Physically, a CT needs to have an iron core through which one or more primary conductors pass. The most basic
type is a solid-core CT, where an iron doughnut is wrapped with turns of wire. This type of CT is relatively inexpen-
sive, typically very accurate, but requires that the primary conductor be disconnected and reconnected to install, thus
exposing the installer to high-voltage and disrupting the primary circuit.

Split-core CTs also require an iron core around the primary, but do so using two hinged halves that mate to form the
continuous iron loop. This type of CT can be installed by simply snapping the two halves over an active primary
conductor.

55

https://en.wikipedia.org/wiki/Current_transformer

IoTaWatt Documentation, Release 02_03_20

Fig. 1: Solid Core CT

Fig. 2: Split Core CT

56 Chapter 14. CT Basics

IoTaWatt Documentation, Release 02_03_20

14.3 Installation

The installation of CTs can be dangerous and/or cause hazardous situations resulting serious injury or death. World-
wide, there are a variety of electrical conventions, regulations and standards. It is the user’s responsibility to insure
that the installer is qualified and all local codes and regulations are followed.

To measure the current in a circuit, a CT is installed on one, and only one, of the conductors in a circuit. Either the
conductor is passed through the solid-core, or the split-core is clamped over it.

CTs must have a load. Without a load, they will develop very high voltages that can damage the core windings and/or
create a safety hazard. When plugged into the IoTaWatt, the secondary windings are loaded by a burden resistor.

Some CTs have protective diodes, called TVS diodes, that will protect against damage when unplugged for short
periods. Even if a diode protected CT is to be unplugged for an extended length of time where the primary is energized,
the CT should be removed or shorted. Shorting will not damage the CT.

14.4 Polarity

CTs are manufactured to produce a secondary current that is in phase with the primary current when installed with a
particular orientation. In single and split-phase installations it is important to observe polarity in certain situations. In
three-phase installations, it is imperitive that a polarity convention be observed.

IoTaWatt will accept many different CTs from different manufacturers. While most have some type of markings that
can be used as a reference for polarity, there is no universal standard. Typically, CTs from the same manufacturer will
be consistent with respect to source and load indicators.

And so it is for the Echun CTs that IoTaWatt, Inc makes available. When installing, we use the notion of a source and
a load. The source can be conceptualized as where the power comes from and the load as where the power goes.

So for the mains, or incoming power to a service, the source would be the meter side, or incoming power feed. The
load would be the main circuit breaker or fuse side.

For branch circuits, it would be just the opposite. The source would be the circuit-breaker side, and the load would be
the appliance side.

For a solar inverter connection, the source would be the inverter side, and the load would be the circuit-breaker or
other point of interconnect.

14.5 Single and three-phase systems

All of the CTs in single or three-phase systems should be installed identically with respect to load and source. This is
especially important when configuring three-phase systems using the Derived Three-phase method.

14.6 Split-phase systems

Most of North America and some Asian countries use a split-phase power system with dual voltage, typically
120/240V. With this power system, there are two mains with exact opposite phase. The voltage between either main

14.3. Installation 57

threePhase.html

IoTaWatt Documentation, Release 02_03_20

Fig. 3: Here you can plainly see “This side toward source”

58 Chapter 14. CT Basics

IoTaWatt Documentation, Release 02_03_20

Fig. 4: Here the arrow points source(K)->load(L)

14.6. Split-phase systems 59

IoTaWatt Documentation, Release 02_03_20

Fig. 5: This is an Echun ECS25200 clamp type CT used for 200A mains. Both sides are shown. Note the arrows just
under the opening. The arrow pointing up to the opening indicates the source side, and the down arrow indicates the
load side.

60 Chapter 14. CT Basics

IoTaWatt Documentation, Release 02_03_20

Fig. 6: This is the common SCT013 CT. If you are using them exclusively, the arrow can be aligned consistently as
source to load. But note that if using with the Echun CTs, they must be installed with the arrow pointing from load
to source. This isn’t a fault of either manufacturer. It just reflects the lack of a standard for how to connect the CT
secondary to the 3.5mm jack used to connect.

14.6. Split-phase systems 61

IoTaWatt Documentation, Release 02_03_20

and neutral is 120V, while the voltage between the two mains is 240V. This provides an advantage of the relative
safety of lower voltage in small appliance outlets, while still providing high voltage for workhorse appliances like
water-heaters, ranges, and clothes dryers.

In these systems, while possible to use two voltage references, typical IoTaWatt installations use a single reference
that reflects the phase and voltage of one of the sides, or legs as they are commonly called. The result is that CTs
on the other leg must be oriented the opposite way to be in phase with the opposite voltage reference. This can be
accomplished by physically installing them reversed, or by installing all of the CTs the same way and checking the
reverse box when configuring.

There is more to installing CTs on 240V circuits in split-phase systems in the next chapter.

14.7 240V Split-phase circuits

As explained above, split-phase systems can provide high-voltage for large appliances. These circuits are connected
to two adjascent CTs that are on different legs. The usual convention is to use RED and BLACK wires or, as explained
below, BLACK and WHITE for pure 240V circuits.

14.7.1 240V only

When I say pure 240V circuits, I mean circuits that are usually a single load, and do not have a third neutral wire to
use either leg independently for 120V. Examples of pure 240V circuits would be a resistive water-heater, well-pump,
and baseboard electric heater. A common giveaway for these circuits is that they don’t have a neutral wire, and usually
use two conductor with ground BLACK and WHITE leads.

With these circuits, you can place the CT on just one of the conductors, and check the double box in input configuration,
directing IoTaWatt to double the voltage value to report correct power and amperage.

14.7.2 120/240V circuits

Like the pure 240V circuits above, these circuits use two adjascent circuit-breakers, but also have a neutral conductor.
They usually have RED and BLACK conductors on the circuit-breaker and a white neutral conductor that connects to
the neutral bussbar. Typical appliances are ranges, ovens, and clothes-dryers. Circuits feeding sub-panels are usually
of this type as well.

For these circuits, the two legs must be measured individually because the current in each is not always the same.
There are a couple of ways to do this.

The easiest way is to pass both the RED and BLACK conductors through the CT. A CT will measure the total current
of all of the conductors that pass through the primary. But there is a twist. The phase of the current in each is exactly
opposite the other, so they they will cancel each other out and rather than get the sum of the two, you can get the
difference between the two.

The solution is to pass one conductor through in the opposite direction to the other. There is a common trick for this.
In most panels, the conductors are brought past the CT in a U shape so that there is some excess wire in case the circuit
needs to be moved within the panel. You can use this U configuration to easily reverse one of the conductors. In this
case, the CT needs to handle the combined capacity of the two circuit breakers when added together. An ECS1050
can probably be used up to about a 2x30A breaker.

An alternate method, and recommended with high amperage sub-panel circuits, is to put a separate CT on each leg.
The CTs can be connected to two individual IoTaWatt inputs and added together later for the total. With this method,
each of the two CTs only need match the capacity of one of the circuit breakers.

62 Chapter 14. CT Basics

IoTaWatt Documentation, Release 02_03_20

Fig. 7: The CT is clamped around the RED wire going down and the BLACK wire going up.

14.7. 240V Split-phase circuits 63

IoTaWatt Documentation, Release 02_03_20

Two individual CTs can also be combined with a common headphone splitter and fed into a single IotaWatt input.
When combining this way, both CTs must be the same model with an individual capacity sufficient to measure the
combined capacity of the two circuit breakers.

64 Chapter 14. CT Basics

CHAPTER 15

Split-Phase Installation

This chapter assumes the reader has read the CT Basics section.

15.1 What is split-phase?

Worldwide, virtually all of the residential power delivered to residential homes is 230V-240V single phase. In North
America, the single-phase 240V supply is split so that there are two 120V legs that are typically used for lighting and
light-duty appliances. To learn more see the Split-Phase Wiki.

15.2 Split-phase load centers

Fig. 1: Maybe
neater than nor-
mal load center

A typical split-phase load center has two Main circuit breakers, one for each of the two “legs”
coming from the service entrance. There is also a third neutral wire that is directly connected
to the neutral bus - a long bar with holes and screws to connecte conductors. Another ground
bus is provided which is connected to a reliable local earth connection like a ground stake. In
most entrance panels, but not sub-panels, the neutral and ground busses are “bonded” (connected
together).

The service is typically described in terms of the amperage rating of the Mains circuit breakers or
fuses. Most common are “100A service” and “200A service”.

See the North America section of this Load-Center Wiki. to see how the split-phases correspond to
alternating breaker rows.

15.3 Monitoring split phase

When monitoring a circuit in a split phase service, it’s helpful to recognize exactly which of the
mains circuits it is utilizing. There are three possibilities:

65

CTbasics.html
https://en.wikipedia.org/wiki/Split-phase_electric_power
https://en.wikipedia.org/wiki/Distribution_board

IoTaWatt Documentation, Release 02_03_20

15.3.1 120V phase A

These circuits are two conductor (plus ground) and typically use a black conductor
connected to the circuit breaker and a white conductor connected to the neutral bus.
As described in the Wiki, circuit breakers in odd rows will be on phase A. Odd rows
include breakers numbered [1,2] [5,6] [9,10]..etc.

15.3.2 120V phase B

Same as above, except circuit breakers will be in the even rows with breakers numbered
[3,4] [7,8] [11,12]. . . etc.

15.3.3 240V

These circuits are typically larger appliances like Hot-Water, Range, Pumps, Electric Heat, Dryers, Heat-
pumps, sub-panels, and Air-conditioners. They use two circuit breakers in adjascent rows, so one of the
breakers is on phase A and the other is on phase B.

As explained in the CT Basics section, 240V loads can be two-wire or three-wire.

Two-wire loads typically use two conductor cable with the white and black conductors connected to the
two circuit-breakers. For these circuits, a single CT can be placed on either one of the two conductors and
the “double” box checked to indicate to IoTaWatt that the voltage is doubled to 240V. Orientation of the
CT is dependent on the row that the CT is associated with.

Three-wire loads typically use three conductor cable with black, red, and white conductors. The red
and black are connected to the two breakers and the white is connected to neutral. These loads must be
measured with two CTs, one on the red and one on the black, or by passing the two conductors through
one CT in opposite directions so that the resulting orientation of the CT is correct for the row of the
breaker that each conductor is connected to. An illustration canm be found in the CT Basics section.

15.4 Voltage Reference

The voltage between the two mains conductors is nominally 240V. That is brokenb down into two 120V potentials
between each of the Mains and the neutral, but they unless they are in perfect balance, there will always be a difference
in voltage between the two phases. That said, the difference in most situations is practicxally negligable and the sum
of the two will always equal the voltage between the two Mains.

This is an important point, because in order to measure real-power, what your meter measures and you pay for, it’s
necessary to also have a reference voltage on that circuit.

IoTaWatt supports multiple voltage references, but as a practical matter, you only need one to measure any of the three
circuits described above.

The simplest and most effective reference is a 120V wall transformer connected to an ordinary 120V plug as close to
the load center as possible. That will provide a reference for the phase it is plugged into, and a reference that is the
exact opposite of the other phase, or to put it another way, the reverse of the other phase.

15.5 Mains CT orientation

The first CTs to be installed should be the Mains.

66 Chapter 15. Split-Phase Installation

https://en.wikipedia.org/wiki/Distribution_board
CTbasics.html
CTbasics.html

IoTaWatt Documentation, Release 02_03_20

As mentioned in multiple discussions, this is a job for someone familiar with the working with
live, partially exposed electrical wiring and familiar with all of the risk factors. An electrician is
recommended.

Because each of the Mains is on a different phase, and we are using the same voltage reference for both phases, we
need to reverse one of them so that the current it measures aligns with the reversed voltage reference. So which one?
The answer is that because the wall transformer plug is not polarized as well as other uncontrolled factors, we don’t
know yet.

So what we do is install just install the CTs with opposite orientation, configure them, and look at the status display of
the IoTaWatt. If reversed, they will show a symbol. To correct this, you can do one of two things.

• Reverse the wall transformer in it’s socket.

• Click the “reverse” box in the VT configuration menu.

Now the two Mains inputs should show the Watts for each Main and no reverse .

15.6 Load CT orientation

First, it’s important to note that the only consequence of installing a load CT backward is that it will show a symbol
next to the input in the status display. This indicates that IoTaWatt has recognized that the voltage and current are
opposite and is producing the correct measurement by reversing the output numerically. There is no error attributable
to this correction. If the symbol doesn’t bother you, you can place the CTs without regard for phase.

Another approach is to simply install the CTs without regard for phase orientation and then simply check the “reverse”
box for any inputs that show the symbol in the status display or physically reverse those CTs in the load center.

To install with correct orientation initially, the easiest method is to install one CT on an active circuit and note if the
symbol appears in the status display. If so, reverse that CT. Now note which way the correctly oriented CT is installed
and whether it’s row is even or odd.

If it’s an even row, all of the CTs that you install on even row circuit-breakers should be installed with the same
orientation and the odd row circuit breakers with the opposite orientation. And visa-versa.

15.6. Load CT orientation 67

CTconfig.html

IoTaWatt Documentation, Release 02_03_20

68 Chapter 15. Split-Phase Installation

CHAPTER 16

Data Visualization

IoTaWatt is capable of storing ten years or more of high resolution data. An integrated web-server provides access
to that data using a versatile query/graph application called Graph+ and also provides a RESTful data query facility
capable of producing JSON or CSV formatted downloads.

You can also upload your data to InfluxDB, PVoutput or Emoncms.org providing a variety of alternative ways to
organize and view your voltage, power and energy use. The servers can be fast and accessible from any place where
there is internet connectivity. But there are some circumstances under which you may prefer to access your data
directly from the IoTaWatt:

• You prefer the simplicity and power of the local graphic viewer.

• You are not using Emoncms or influxDB to save your data.

• You require finer resolution than is used in your Emoncms feeds.

• You need to see data that is collected by IoTaWatt but is not being uploaded to your cloud service.

There are two graphing packages available with the current release:

16.1 Graph+

This latest graphic viewer unlocks virtually all of the data in the datalog. You can graph all of the metrics associated
with each input or output, including Volts, Watts, Wh, Amps, VA, PF and Hz.

There are selectable predefined time-periods like “Today”, “Yesterday”, “Last Week” and “Last Month”, and a calendar
interface that can be used to select custom date/time bounds. Data can be grouped by hour, day, week or month. The
IoTaWatt query recognizes week and month boundaries and daylight-time changes.

16.2 Original Graph

The graph program provided in the initial releases through 02_03_02 is still supported and available for those who
may have become comfortable with it and whose capabilities are adequate for your needs. It remains as a menu pick

69

IoTaWatt Documentation, Release 02_03_20

under Data tab.

The new Graphic Viewer is a superset of the functions of the Original Graph, so this feature should be considered
depricated and may be removed in a future release.

70 Chapter 16. Data Visualization

CHAPTER 17

Graph+

Available with release 02_05_00.

This data visualization application runs in any browser to graphically present any of the data stored in the IoTaWatt. It
features relative and absolute time period selection and handles all units of measure supported by IoTaWatt. You can
produce line and/or bar charts with optional stacking and fill. Real-time graphs can be set to automatically refresh.
Once created, any graph specification can be saved for quick future use.

The application is fully adaptive so it will work well on a full range of devices from mobile to desktop.

The window can be broken down into four parts, each serving a different function:

• Unit/Source selector

• Time period selector

• Graph window

• Trace tables and options

Below is a complete window with all of the parts. We’re plotting power for the current day (midnight to 5:42pm).
Along with that we’ve plotted the accrued Watt-hours for the day, 14.2 kWh as of 5:42.

71

IoTaWatt Documentation, Release 02_03_20

17.1 Unit/Source selector

So now lets break it down. On the left is the “sidebar” where you select each of the measurements that you want to
plot. Every input (or output) can produce a variety of measurements. VTs measure Voltage and frequency(Hz), and
CTs measure Watts, Watt-hours, Amps, VA, and Power-Factor (PF). So the first thing is to select the measurement you
are interested in. At the top are the unit selection buttons. Click on the particular unit you are interested in.

72 Chapter 17. Graph+

IoTaWatt Documentation, Release 02_03_20

The Source list that appears below the unit selection will list all of the sources that can produce a measurement with
the selected until. Basically Volts and Hz pertain to VT inputs and all other units pertain to inputs (or outputs) that are
configured with CTs. The list will change immediately when a new unit is selected.

On the right Watts are selected and this IoTaWatt lists 15 sources that are configured as power channels (CT inputs
or CT based outputs). Note that the last entry shows a blue trash-can indicating that particular unit/source has been
selected and is currently graphed.

To the left Volts are selected, so a different set of data sources corresponding to voltage inputs (VTs) are listed.

Click on any of the individual sources in the list to add that data source to the graph, measured in the selected unit.
This combination is called a trace. It will be assigned a distinguishing color and the list entry will now include a
trash-can symbol with the assigned color as a background. The trace should also appear on the graph within several
seconds.

While the list of sources may be the same for different units like Watts and Wh, they only show active if they are being
graphed in the currently selected unit. In the case of the graph above, Total-Power is plotted as both Watts and Wh,

17.1. Unit/Source selector 73

IoTaWatt Documentation, Release 02_03_20

so it will appear as selected under both units, but note in the large picture above that the color is blue under the Watts
unit, while it is green under the Wh units, indicating they are different traces.

One final note about the sidebar. It will disappear when the screen size gets to be too narrow to accomodate it. When
that happens, it is replaced by a list icon at the top left of the main screen. Pressing that will overlay the main body
with the selection sidebar. An X on the sidebar is used to hide it again.

17.2 Time period selector

Graph+ plots all selected traces over a single time period that is defined and modified using the time period selection
section. You can select one of the many pre-defined relative time periods or specify absolute dates and times. Once
data has been plotted, the zoom/pan buttons can be used to modify the time-frame. Graphs with relative time-periods
ending in the present can be set to automatically refresh.

17.2.1 Period Selector

This is where you specify an initial time period, and where you go to change it. In the upper left is a dropdown selector
that is used to specify common relative time periods.

For most analysis of recent activity, these selections should make things quick and easy. All of these predefined periods
are relative to the current date/time. So if you ask for today, you will get a plot of measurements from midnight to the

74 Chapter 17. Graph+

IoTaWatt Documentation, Release 02_03_20

current time.

17.2.2 Group Selector

IoTaWatt records each measurement at 5 second intervals. That’s 17,280 measurements per day. The graph size cannot
possibly represent that, and it would take a long time to query that amount of data. Instead, IoTaWatt can deliver either
the average value or net change of a measurement for any given interval. So when plotting a day’s worth of data,
we ask for automatic grouping which results in aggregating the data over 2 minutes in a 24 hour period. If you were
looking at one hour or less, the grouping would be the highest resolution 5 seconds.

There are other choices when looking at longer time periods. Here we’re plotting last month’s usage and will group
by day. This will return the average or change in value for each of the 28-31 days in the past month. All units are
averaged except Wh, which return the total used in each grouping. So in this case, there would be 28-31 data points
plotted.

It’s important to note that when selecting grouping by day, week, month or year, you are not just getting the nominal
grouping of 24 hours, 168 hours, etc. The selection process recognizes daylight-time in determining hours and days,
and recognizes day of week, and month boundaries.

• Weeks begin and end at 12:00am on Sunday.

• Months begin and end at 12:00am on the 1st day of the month.

• Years begin and end at 12:00am on Jan 1.

17.2.3 Custom Date Selection

If the time period needed isn’t covered in the selection list above, there are date pickers that can be used to choose
specific start and end dates (and times). If you click on these dates, a calendar will appear to select a start and/or end
date and time. When you change either of these dates, the period selector will automatically change to “custom dates”
and the graph will be updated to span the new date specification.

This is only one of several ways to manipulate custom dates. There are two other ways to modify the dates bounding
the current graph. The most obvious is the zoom/scroll bar.

This bar works just as you think.

• Zoom (+) will zoom in 50% on the center of the graph.

• Zoom (-) will zoom out 100% on the center of the graph.

• Left Full (<<) Will shift the time into the past 100%, ending where it once began.

17.2. Time period selector 75

IoTaWatt Documentation, Release 02_03_20

• Left Half (<) Will shift the time 50% into the past.

• Right Half (>) Will shift the time 50% into the future.

• Right Full (>>) Will shift the time 100% into the future, starting where it once ended.

There is one last way to modify graph period. You can simply select a subset of the graph window holding down the
left mouse button. When you release it, the highlighted selection will become the new time period.

17.2.4 Refresh/Freeze

The button will immediately refresh the current plot. If the time period of the current plot ends at the
current time, as in the “Today”, “Last 10 minutes”, etc., the display will continue to refresh at the “interval” rate. For
example if the auto interval is 2 minutes, it will continually refresh every 2 minutes. You will know it is auto refresh

mode because the Refresh button will change to . If you click this button the auto refresh will stop and

the button will revert to the manual button.

The Refresh/Freeze state is retained when saving and subsequently restoring graphs. This feature is useful when
loading a saved graph as an embeded window where there are no controls, allowing an auto refresh graph can be
displayed in a frame.

17.3 Graph window

Once data sources are selected, the graph window comes to life.

76 Chapter 17. Graph+

IoTaWatt Documentation, Release 02_03_20

In the upper left is the legend, a list of all of the unit/source combinations that are being plotted. The color of each
trace matches the color used to designate the source selection and the color associated with the trace in the option table
that will be described later.

There is no notion of a left or right Y-axis selection. Each unit that is included in the plot is alternately placed on the
left and right side of the plot automatically. You know which scale pertains to each trace because the scales contain
the unit designation.

17.4 Trace tables and options

The last major section of the window is the options and information table area. This is a multi-purpose area that
displays different tables depending on the selection in the top row. There are four tables:

17.4.1 Options Table

This table lists all of the traces selected for the current graph, and allows modifying the default settings for each trace.
Changing an option will have an immediate effect on the graph. There is no Save or Refresh required.

Arrows These sort arrows appear when there are two or more entries in the table. Use them to reorder
the entries. Primarily helpful when using Stacked traces.

Trash Removes the trace from the graph and deselects from the source list.

17.4. Trace tables and options 77

IoTaWatt Documentation, Release 02_03_20

Color Selects an overide color.

Line/Bar Toggle between line or bar chart for this trace.

Fill Fill the area under the line or bar.

Stack Stack this trace above any other stacked traces appearing before it in this list. You can change the
position of a trace (and so it’s stack position) using the sort arrows appearing at the beginning of
each entry when two or more traces are present.

Accrue This checkbox will appear on Wh traces and causes the Watt-hours to accrue in order to plot a
running total. Wh are accrued in the sample graph to illustrate this feature.

Decimals The number of decimal places to request and plot. The default value is typically appropriate for
the unit of measure, but sometimes increasing the precision provides a more detailed representation.

Scale The values returned in the query will be muliplied by this scale factor. This will affect the values
in the CSV table as well.

17.4.2 Statistics Table

This is a list the traces with useful statistics.

Arrows These sort arrows appear when there are two or more entries in the table. Use them to reorder
the entries. Primarily helpful when using Stacked traces.

Trash Removes the trace from the graph and deselects from the source list.

Quality This indicates the number and percent of groups for which data was available. It is typically
100%, but could be less because of power failures or malfunction during the period.

Min The smallest group value graphed for this trace.

Max The largest group value graphed for this trace.

Diff Difference between Min and Max.

Average Mean value of all of the groups graphed for this trace. Does not include null values.

Sum For Watt and Wh traces this is the total Wh for the period.

78 Chapter 17. Graph+

IoTaWatt Documentation, Release 02_03_20

17.4.3 Yaxes Range Table

This list is used to modify the Yaxis range for each unit. The default is “auto”, which works well to represent the full
range of the data, however the Min and/or Max can be specified here to overide the auto default. Once changed, the
new limit will remain in effect until one of these things happens:

• The overide value is removed.

• A saved graph is loaded.

• The reset button is clicked.

Plot Range: The Yaxis range used in the current graph.

Data Range: The actual range of all of the traces using this unit.

Min: The lower bound to be used in subsequent graphs, or blank for auto assignment.

Max: The upper bound to be used in subsequent graphs, or blank for auto assignment.

17.4. Trace tables and options 79

IoTaWatt Documentation, Release 02_03_20

17.4.4 CSV Data

This is a comma-separated-values listing of all of the data used in the current graph. The first column is the time,
subsequent columns are the group values for the traces in the order that they are listed in the options or statistics
tables.

There are a couple of options available:

Time Format:

• Date-time string - selects a date and time format acceptable to spreadsheets.

• Seconds-from-start - selects a count of seconds from the start time.

• Unix-time - selects the count of seconds from Jan 1, 1970 UTC.

Null Values:

• Show - include missing or invalid lines with “null” as a value.

• Remove line - Where a line has a null value, remove the entire line from the display.

80 Chapter 17. Graph+

IoTaWatt Documentation, Release 02_03_20

Copy: Copy the contents of the CSV table to the clipboard.

Download: Download the CSV data as a file.

17.5 Saving Graphs

Graph+ is great for ad-hoc queries, but it can take some time to fine-tune a busy graph, and it recreating it weekly or
monthly can get old. This is where the ability to save a set of graph specification comes in handy.

At the bottom of the sidebar you can save and reload any number of graphs. Each graph is saved in the IoTaWatt, so it
doesn’t matter if you use a different browser or device to recall them, they will always be there.

Once you have a graph that you like, enter a description in the Graph name: box. The save button will appear. Click
it. The graph has been saved. Click the Saved Graphs: selector and a list of all of the saved graphs will appear. Click
any selection and Graph+ will load that graph specification.

This is a graph of total monthly kWh to date. Once loaded, I can do a lot with it:

• Change group to Weekly to see it by week.

• Change the period to last-year or anything else.

• Show the CSV table to see list of usage by month.

17.5. Saving Graphs 81

IoTaWatt Documentation, Release 02_03_20

• Add traces for particular circuits, stacking if appropriate, to see a breakdown.

• Move the data to a spreadsheet to apply your tariff and convert to cost.

Note that you are saving the graph specification, not the actual graph. If you save a graph of yesterday and reload it
tomorrow, it will plot today. If you want to save a static graph, select the custom dates period at the top before saving.

Whenever a saved graph name is in the Graph name: box, the Delete key will be available. To change a graph
specification, simply load it, make the changes and save it again.

17.6 Running Directly with URL

Graph+ can be loaded directly from the IoTaWatt’s web server using the URL

http://iotawatt.local/graph2.htm [?graph=savedgraph [&embed]]

Substitute your local hostname/IP address if different.

17.6.1 graph=

Optional query parameter to specify a saved graph that is to be loaded initially.

17.6.2 embed

Causes Graph+ to display only the plot window of the selected graph. If the saved graph has refresh enabled, the plot
will refresh at the active interval.

17.7 Reset

Sometimes you just want to start over with a clean slate like the app was just loaded.

82 Chapter 17. Graph+

http://iotawatt.local/graph2.htm

CHAPTER 18

Original Graph

The original local graphing feature was derived from the Emoncms graphing application and adapted to report the
input and output channels of IotaWatt directly. It is available on devices connected to the same WiFi network as the
IotaWatt or on the internet using local port forwarding.

From the configuration app click “Data” and then select”Original Graph” .

Press the Voltage, Power, and Energy tabs under Feeds to list your IotaWatt input and output channels. Select the Power

83

IoTaWatt Documentation, Release 02_03_20

tab and then select one or more of your channels listed there. Selecting Total_Power (actually an output channel that
is the sum of Main_1 and Main_2) we get the following graph.

Notice that the graph covers a 24 hour period. That’s the default. You can select the period using the D, W, M, Y
buttons at the top, and you can move the time frame left or right and zoom in or out.

Back to this graph. It reveals that average power is about 600 watts. To be precise, the mean power is 595 watts and the
total power for the day was 14,300 watt-hours (14.3Kwh) as indicated in the feed statistics at the bottom. Wondering
what might be causing those spikes at various times throughout the day? Lets lay some other input channels on top.

84 Chapter 18. Original Graph

IoTaWatt Documentation, Release 02_03_20

Now the story unfolds. Most of the 1000 watt spikes are cycles of a point-of-use electric water heater in the Kitchen
(Kitche_HW). The big spike around 9pm is the Oven/Stove circuit, and the rest of the spikes seem to line up with
kitchen appliances.

That’s just a sample of the power of the graphic presentation possible both locally and with essentially the same tool
on Emoncms.org. Practically speaking, those power spikes are not the meat-and-potatoes of home energy use. Other
circuits reveal the contribution of workhorse appliances like the refrigerator, freezer, heat-pump (not active this day),
clothes dryer, computer and office machines. Kwh can be plotted as well, and compared to the whole. With 14 input
channels, its possible to divide household usage into manageable components.

85

IoTaWatt Documentation, Release 02_03_20

86 Chapter 18. Original Graph

CHAPTER 19

File Manager and Editor

19.1 IoTaWatt file systems

IoTaWatt has two file systems. The primary file system is maintained on the internal SDcard and is formatted as
FAT32. Typical SDcard size is 8Gb. All of the web server files as well as the data and message logs are maintained on
the SDcard.

The ESP8266 also has an onboard file system called the SPI Flash File System or SPIFFS that is much smaller at
1Mb. IoTaWatt uses that area for limited device specific information. This file system uses a flat directory structure,
however IoTaWatt presents it as hierarchical through the file manager.

19.2 File Manager

The integrated web server can be used to access and manage the files on both the SDcard and in the SPIFFS file system.
The web server is based on the generic ESPWebserver developed by the folks at the ESP8266/Arduino project. The
file manager application is the unmodified application that they distribute. The major functions are:

• Display file system

• Delete files

• Upload files to the IoTaWatt

• Download files from the IoTaWatt

• Edit files

The File Manager is accessed from the dropdown buttons in the Tools main menu.

87

IoTaWatt Documentation, Release 02_03_20

The left column is the file list. Directories can be expanded by clicking the + sign as in the typical paradigm. Action
can be taken on individual files by right clicking and selecting from the options:

• Edit

• Download

• Delete - Proceed cautiously. There is no confirmation popup. Delete is delete now!

19.3 Downloading Files

To download a file, right-click it in the file manager as above and select the Download option. Exactly how it is
handled and where the file is downloaded is a function of your operating system and browser, but it will follow the
normal protocol.

19.4 Uploading Files

Files can be uploaded to the IoTaWatt by clicking the Browse button at the top and selecting a file in the manner
provided by your browser. Once selected, click Upload to transfer the file to the IoTaWatt file system. You can edit
the pathname before uploading. Additional buttons are provided to create a new directory or file.

19.5 SPIFFS

The SPIFFS is presented as the directory esp_spiffs. Expanding that directory will reveal the contents of the SPIFFS
with a pseudo hierarchical directory structure. Files can be accessed in the same way as on the SDcard.

88 Chapter 19. File Manager and Editor

IoTaWatt Documentation, Release 02_03_20

19.6 ACE Editor

One of the most powerful features of this app is the editor. It’s a version of the open Ace Editor and is very fast and
capable. It’s not particularly useful on mobile devices, but does very well on a keyboard equipped browser. You will
need to learn the keyboard shortcuts, but even with just a few of the usual suspects, you can be very productive (ctrl-S
save, ctrl-Z undo, ctrl-F find, etc.)

The IoTaWatt configuration app was developed exclusively using this editor and an IoTaWatt. In fact, that’s the file
that appears in the editor window when you start the file manager app.

19.6. ACE Editor 89

https://ace.c9.io/

IoTaWatt Documentation, Release 02_03_20

90 Chapter 19. File Manager and Editor

CHAPTER 20

Query API

20.1 Overview

The IoTaWatt Query API provides access to the historical data in the datalogs using a restful interface that produces
a table of JSON or CSV data. The table columns can be time, IoTaWatt inputs and IoTaWatt outputs. The table rows
are datalog values grouped by a fixed time period or relative time periods like days, weeks, months and years.

Values can be requested for a variety of measurements such as Watts, Volts or Amps.

The Query API provides data to the Graph+ utility.

20.2 Query types

There are two basic queries currently supported:

20.2.1 show

Used to obtain a list of all inputs and outputs available to the query.

20.2.2 select

Used to select a set of series for a particular time period and return a table of values in JSON or CSV
format.

20.3 query?show

This is the only form of the show query:

91

IoTaWatt Documentation, Release 02_03_20

HTTP://iotawatt.local/query?show=series

This query simply lists all of the available inputs and outputs along with their respective primary unit of measure. The
format is always JSON.

The response lists the series names that the select query will recognize. Here is a typical response from a simple
configuration:

{"series":[{"name":"voltage","unit":"Volts"},{"name":"mains1","unit":"Watts"},
{"name":"mains2","unit":"Watts"},{"name":"solar","unit":"Watts"},
{"name":"heat_pump","unit":"Watts"},{"name":"mains","unit":"Watts"},
{"name":"used","unit":"Watts"}]}

20.4 query?select

20.4.1 select=[series1 [, series2 . . .]]

Required parameter. Specifies the series to be returned in the columns of the response. There are three
types of series that can be requested:

time [.local | .utc] [.iso | .unix] Returns the time of the beginning of the reporting group. Modifiers can
be used to specify local (default) or utc time, and iso date format(default) or unix seconds since
1/1/1970 format.

<voltage input or output> [.volts | .hz] [.d<n>]

A voltage input or output. A unit modifier can be used to specify:

• .volts (default)

• .hz (frequency).

The .d<n> modifier overides the default number of decimal digits.

<power input or output> [.watts | .amps | .wh | .va | .var | .varh | .pf] [.d<n>]

A power input or output. A unit modifier can be used to specify:

• .watts (default)

• .amps

• .wh (watt-hours)

• .va (volt-ampere)

• .var (volt-ampere-reactive)

• .varh (volt-ampere-reactive hours)

• .pf (power factor)

The .d<n> modifier overides the default number of decimal digits.

An example might be: select=[time.local.unix,mains.watts.d0,solar.wh.d1]

20.4.2 &begin=<time specifier>

Required parameter. Time can be specified in a variety of relative and absolute formats. See time specifiers

92 Chapter 20. Query API

IoTaWatt Documentation, Release 02_03_20

20.4.3 &end=<time specifier>

Required parameter. Time can be specified in a variety of relative and absolute formats. See time speci-
fiers. end must be greater than begin.

20.4.4 &group={ auto | all | <n> {s | m | h | d | w | M | y}}

Optional parameter. The datalog contains measurements at 5 second (current log) and 1 minute (history
log) intervals. This parameter specifies how to group those measurements into rows in the response table.
The simple way, useful for detailed examination of short time periods, is to use some fixed number of
seconds or minutes. When looking at longer time periods, it can be useful to group by hour, day, week
etc. IoTaWatt knows where these boundaries are and will return the correct grouping taking into account
daylight time changes, days-in-month, and leap years.

The default is auto, which selects a fixed time group to yield about 360 rows (resolution=low) or 720
rows (resolution=high).

all will cause all of the data in the time period to be treated as a single group. For most units, this will
result in the average value over the entire period. For Wh, it will result in the total Wh for the entire
period.

To overide, specify a time unit preceeded by a multiplier, as in:

• 10s (ten seconds)

• 5m (five minutes)

• 1h (one hour)

• 1M (one month) note case sensitive m=minutes, M=months

20.4.5 &format={ json | csv}

Optional parameter specifies the format of the query response. The default is json.

json Json format where the response is a Json object enclosed in brackets {} and the data table
is a json array “data”:[[series1,series2,..],[series1. . .]]

csv Comma Separated Values table.

20.4.6 &header={ no | yes }

Optional parameter specifies if a header is to be included to describe the columns (series) included in the
response. Default is no.

For &format=csv, a row is prepended to the data with a comma delimited list of the series names.

For &format=json, the array “labels”:[series1 [,series2]] is added to the response. Another array
“range”:[begin, end] is added where begin and end are the 10 digit absolute unix begin and end times of
the response.

20.4.7 &missing={ null | skip | zero}

Optional parameter specifies what to do when a missing value is encountered when building a response
row.

20.4. query?select 93

IoTaWatt Documentation, Release 02_03_20

null Use the value null.

zero Use the value zero.

skip Suppress the entire response row.

20.4.8 &resolution={ low | high }

Optional parameter specifies the relative resolution of the response table when &group=auto. The default
is low. For more information see &group= above.

20.4.9 &limit={n | none }

Optional parameter overides the default output limit. The default is 1,000 lines.

n Maximum lines generated

none No limit, query runs to completion

Query is a blocking request. The IoTaWatt does not sample power while responding to a query. Short
queries, as issued by Graph+, are of little consequence. They process in a second or less. To avoid
unintended long lapses, a limit is placed on the number of lines (groups) that are returned by the query.
To understand the time required for longer queries, you can experiment with a subset and scale the time
up.

If the limit is reached, output will stop with a full line. If the format is json and header=yes, the response
will include an object called “limit” with a value of the UTC timestamp of the next line that would have
been produced. If the format is CSV, the following message will be appended with the UTC timestamp of
the next line that would have been produced.

Limit exceeded at <UTCtime>

20.5 time specifiers

A time specifier can define a date/time in absolute or relative terms. Three different formats are allowed:

• Unix time

• ISO time

• Relative time

20.5.1 Unix time

Unix time is the count of seconds or milliseconds since Jan 1, 1970. a Unix time specifier is simply a 10 digit integer
for seconds or a 13 digit integer for milliseconds. IoTaWatt will always round the time to a multiple of 5 seconds.

20.5.2 ISO time

A subset of the ISO 8601 standard can be used to specify an absolute date and time. The supported format is:

YYYY [-MM [-DD [Thh [:mm [:ss [Z]]]]]]

As you can see, the only thing required is the year, which must be four digits. That is optionally followed by:

94 Chapter 20. Query API

IoTaWatt Documentation, Release 02_03_20

-MM a two digit month 01-12

-DD a two digit day in month 01-31

Thh two digit hours 00-23

:mm two digit minutes 00-59

:ss two digit seconds 00-59

Z indicates the time is UTC rather than local time

Some examples are:

2018-01-01 Start of the year 2018, equal to 2018-01-01T00:00:00 or just 2018

2019-04-15T11:42:15 April 15, 2019 11:42:15

20.5.3 Relative time

Specifies a point in time relative to the current time. Makes it possible to specify “today”, “yesterday”, “last week”
etc. All relative time specifiers begin with a base date or time as follows:

Relative dates all begin at 00:00:00 local IoTaWatt time.

• y - Jan 1, of the current year

• M - The first day of the current month

• w - The first day of the current week (weeks start on Sunday)

• d - The current day

Relative time.

• h - first minute and second of the current hour.

• m - First second of the current minute.

• s - The current second (rounded down to 5 second multiple).

So if “today” is 2019-04-15T16:11:42:

Base ISO time
y 2019-01-01T00:00:00
M 2019-04-01T00:00:00
w 2019-04-14T00:00:00
d 2019-04-15T00:00:00
h 2019-04-15T16:00:00
m 2019-04-15T16:11:00
s 2019-04-15T16:11:40

Base time may be followed by one or more offset modifiers to add or subtract from the base time. The format is:

{ + | -} [n] { y | M | w | d | h | m | s }

Examples:

20.5. time specifiers 95

IoTaWatt Documentation, Release 02_03_20

Base with modifiers Effective time
d-1d 00:00:00 yesterday
d-18h 06:00:00 yesterday
s-3h Three hours ago
y-1M Last December
w-1w+3d+12h Noon on Wednesday of last week
s Now

By using relative time for both begin and end, relative time periods can be specified:

begin end period
d-1d d yesterday
M-1M M Last month
d s Today to date
s-12h s Last 12 hours
w-1w+2d w-1w+3d Tuesday of last week
y s Year to date

20.6 Responses

20.6.1 400 invalid query.

The query has a missing or invalid specification. The response is a json object “error”:”<error details>”.

query:

HTTP:// ... /query?select=[time.iso,heap_pump,misc]&begin=d-1d&end=d&group=h

response:

{"error":"invalid query. Invalid series: heap_pump"}

20.6.2 200 Success

The query succeeded and the response is sent.

csv Response is the table of csv formatted lines.

query:

/query?select=[time.iso,Heat_Pump,misc]&begin=d-1d&end=d&group=h&format=csv&
→˓header=yes

response:

Time, Heat_Pump, misc
2019-10-16T00:00:00, 333, 125.5
2019-10-16T01:00:00, 332.2, 121.4
2019-10-16T02:00:00, 446.8, 116.8
2019-10-16T03:00:00, 416.8, 114.3
2019-10-16T04:00:00, 415.4, 109.9

(continues on next page)

96 Chapter 20. Query API

IoTaWatt Documentation, Release 02_03_20

(continued from previous page)

2019-10-16T05:00:00, 582.9, 111.4
2019-10-16T06:00:00, 711.8, 113.3
2019-10-16T07:00:00, 783.5, 117.1
2019-10-16T08:00:00, 619.6, 117.5
2019-10-16T09:00:00, 333, 116.4
2019-10-16T10:00:00, 339.8, 164.5
2019-10-16T11:00:00, 345.1, 180.6
2019-10-16T12:00:00, 345.6, 114.5
2019-10-16T13:00:00, 345.3, 111.8
2019-10-16T14:00:00, 344.3, 130.9
2019-10-16T15:00:00, 343.4, 302.5
2019-10-16T16:00:00, 343.1, 271.6
2019-10-16T17:00:00, 342, 264.5
2019-10-16T18:00:00, 342.3, 114.1
2019-10-16T19:00:00, 343, 117
2019-10-16T20:00:00, 342.7, 118
2019-10-16T21:00:00, 343.9, 136
2019-10-16T22:00:00, 344.9, 120.2
2019-10-16T23:00:00, 345.7, 124.2``

json Response is a json object.

query:

HTTP:// ... /query?select=[time.iso,Heat_Pump,misc]&begin=d-1d&end=d&group=h&
→˓format=json&header=yes

response:

{"range":[1571198400,1571284800],
"labels":["Time","Heat_Pump","misc"],
"data":[["2019-10-16T00:00:00",333,125.5],
["2019-10-16T01:00:00",332.2,121.4],
["2019-10-16T02:00:00",446.8,116.8],
["2019-10-16T03:00:00",416.8,114.3],
["2019-10-16T04:00:00",415.4,109.9],
["2019-10-16T05:00:00",582.9,111.4],
["2019-10-16T06:00:00",711.8,113.3],
["2019-10-16T07:00:00",783.5,117.1],
["2019-10-16T08:00:00",619.6,117.5],
["2019-10-16T09:00:00",333,116.4],
["2019-10-16T10:00:00",339.8,164.5],
["2019-10-16T11:00:00",345.1,180.6],
["2019-10-16T12:00:00",345.6,114.5],
["2019-10-16T13:00:00",345.3,111.8],
["2019-10-16T14:00:00",344.3,130.9],
["2019-10-16T15:00:00",343.4,302.5],
["2019-10-16T16:00:00",343.1,271.6],
["2019-10-16T17:00:00",342,264.5],
["2019-10-16T18:00:00",342.3,114.1],
["2019-10-16T19:00:00",343,117],
["2019-10-16T20:00:00",342.7,118],
["2019-10-16T21:00:00",343.9,136],
["2019-10-16T22:00:00",344.9,120.2],
["2019-10-16T23:00:00",345.7,124.2]]}

20.6. Responses 97

IoTaWatt Documentation, Release 02_03_20

98 Chapter 20. Query API

CHAPTER 21

Message Log

The message log is the IoTaWatt’s Diary. It makes notes about various events that occur, both ordinary and unusual.
These messages can be helpful in understanding what is happening with the device, or to provide insight into why
something doesn’t appear to be working as it should.

The primary method of accessed the message log is by hovering over the Tools main menu button and clicking the
Message Log button. The config utility will cause your browser to download and display the most recent 10000 charac-
ters in the log. You can access the entire log by using the File Manager app to download the file /iotawatt/iotamsgs.txt
and viewing with a text file editor.

With the exception of the first messages after startup, all of the messages in the log will have a date and time stamp.
Messages issued by one of the IoTaWatt Services will begin with the name of the service followed by a colon, as in
this message issued from the datalog Service indicating it has successfully started.

12/23/17 21:57:06 dataLog: service started.

While it would be impossible to maintain a list of all of the possible messages, the messages issued at startup are pretty
straightforward and provide a lot of information.

** Restart **

SD initialized.
1/08/19 19:39:43z Real Time Clock is running. Unix time 1546976383
1/08/19 19:39:43z Power failure detected.
1/08/19 19:39:43z Reset reason: External System
1/08/19 19:39:43z ESP8266 ChipID: 427289
1/08/19 19:39:43z IoTaWatt revision 4.9, firmware version 02_03_20
1/08/19 19:39:43z SPIFFS mounted.
1/08/19 14:39:44 Local time zone: -5:00
1/08/19 14:39:44 Using Daylight Saving Time (BST) when in effect.
1/08/19 14:39:44 device name: IotaWatt
1/08/19 14:39:47 Connecting with WiFiManager.
1/08/19 14:39:53 MDNS responder started for hostname IotaWatt
1/08/19 14:39:53 LLMNR responder started for hostname IotaWatt
1/08/19 14:39:53 HTTP server started

(continues on next page)

99

IoTaWatt Documentation, Release 02_03_20

(continued from previous page)

1/08/19 14:39:53 WiFi connected. SSID=flyaway, IP=192.168.1.102, channel=1, RSSI -69db
1/08/19 14:39:53 timeSync: service started.
1/08/19 14:39:56 statService: started.
1/08/19 14:39:56 Updater: service started. Auto-update class is BETA
1/08/19 14:39:57 dataLog: service started.
1/08/19 14:39:57 dataLog: Last log entry 01/08/19 14:39:35
1/08/19 14:39:57 historyLog: service started.
1/08/19 14:39:57 historyLog: Last log entry 01/08/19 14:39:00
1/08/19 14:39:58 influxDB: started, url=192.168.1.101:8086, db=iotawatt, interval=10
1/08/19 14:39:58 Updater: Auto-update is current for class BETA.
1/08/19 14:39:58 influxDB: Start posting at 01/08/19 14:39:40

Some things to look for:

Real Time Clock is running. Unix time 1546976383

Except for initial setup, the RTC should always be running. If it is not, suspect the battery needs replacement.

Power failure detected.

This indicates that power interrupted prior to the restart.

Reset reason: External System

This is the reason for the restart. External System is a normal cause. Reasons like WDT and Exception indicate
program faults and, if frequent, should be posted to the support forum.

IoTaWatt revision 4.9, firmware version 02_03_20

The hardware and firmware versions. Good to know if things go wrong, and also useful toget the corresponding
version of this documentation.

Local time zone: -5:00

The local time zone specified in you config file. This message and all subsequent messages should be timestamped
with local-time as opposed to UTC which was indicated in prior messages with by the suffix ‘z’.

device name: IotaWatt

This is the external name of the unit. It will be used as the hostname when connecting to WiFi and it is the name that
you must use to access the device as in http://iotawatt.local.

WiFi connected. SSID=flyaway, IP=192.168.1.102, channel=1, RSSI -69db

Indicates connection to WiFi and the IP address assigned. The RSSI is an indication of WiFi signal strength. A good
number would be between -50 and -78 or so. If you are having WiFi problems, this metric along with the channel
number can be helpful in resolving.

timeSync: service started.

All of the regular services will log their startup. Some will also provide additional information about their configuration
or state. All messages from system services begin with the name of the service followed by a colon.

100 Chapter 21. Message Log

http://iotawatt.local

CHAPTER 22

Troubleshooting

22.1 Led Indicator

The IotaWatt has a bi-color external LED indicator that is usefull in determining the current state and for explicitely
indicating serious problems. Whenever there is a question about whether something may be wrong, it is important to
look at the LED indicator. The LED can blink RED (R) or GREEN (G). When indicating a device state, it will repeat
a sequence of colored blinks.

22.2 Dull Green Glow

This typically means that the device is connected and working properly.

22.3 Dull Red Glow

This indicates that the device is working properly, but either there is no WiFi connection or the real time clock is not
initialized and the time cannot be established from time-servers on the internet via WiFi. As long as the real time clock
is initialized, the IotaWatt can run indefinitely without WiFi. If you are logging to Emoncms or another server, that
will be suspended, but IotaWatt will recognize when the WiFi connection is restored, change the led to dull green, and
send all of the data that it was unable to send during the outage.

To determine if IotaWatt is connected to the WiFi network, try to run the IotaWatt app from a browser on a device that
is connected to the same WiFi network. If it works, the problem was probably the real time clock.

If the app doesn’t start, there is a problem with the WiFi connection. To be sure, restart the IotaWatt by disconnecting
the 5VDC power momentarily and then observe the led during startup. Follow the troubleshooting guide for led
indications during startup.

101

IoTaWatt Documentation, Release 02_03_20

22.4 Not Illuminated

Under virtually all circumstances, the led should be illuminated. If not, the most probable cause is that there is no
5VDC supply. The power supply may be faulty or the USB plug may not be inserted all the way. Check these
things first. Try unplugging the 5VDC USB supply and reconnecting. Try a different 5VDC supply if available. If
all else fails, a more serious problem with the device must be considered. Consult the supplier or someone who can
troubleshoot electronic the hardware.

22.5 Continuous Red-Green-Red-Green.

Downloading new firmware release. Updates are published from time to time and most IotaWatt subscribe to an auto-
update class for which the current release may change. When a new release becomes available, the device initiates a
download of a large file that contains all of the elements of the new release. The download usually takes about 5-6
seconds, but can take longer. While the download is in progress, the IoTaWatt does nothing else and will blink the led
RED-GREEN continuously. At the completion of the download, the release will be installed and your IoTaWatt will
restart. The entire process should never take more than a minute.

22.6 Led Sequences

22.6.1 red-green-green

IoTaWatt is having trouble connecting to the WiFi network. If this is a new IoTaWatt, or the network has changed,
you will need to specify a new network. Otherwise, wait several minutes and the LED pattern should change to a new
code. Follow the advice for that code.

22.6.2 red-green-red

A corrupted datalog (current or history) has been discovered. The file is being scanned from beginning top end and a
diagnostic file will be created. This can take an hour or more for large logs. Allow to run to completion, after which
the damaged log will be deleted and a new log created.

22.6.3 red-red-green

The configured WiFi network is unavailable and the real-time-clock is not running. IoTaWatt can run without WiFi,
but it cannot accumulate log data if it doesn’t know what time it is, and it sets the real-time-clock from the internet.
Determine the problem with your WiFi network or connect to a new network.

22.6.4 green-red-red

IoTaWatt is having trouble accessing the SDcard inside the device. This typically happens during a restart of the
device. You will need to power off the device and open it up by removing the four screws located under the rubber
feet. Check that the SDcard is firmly seated in the socket and retry.

If problem persists, your card may have failed. You can try to insert the card into a computer that accepts SD cards
to see if it can be read. If so, the problem is probably the IoTaWatt SD card socket and the device will need to be
replaced. The good news is that the card should work in a replacement device and pick up where you left off with all
historical data intact.

102 Chapter 22. Troubleshooting

IoTaWatt Documentation, Release 02_03_20

If your card cannot be read by another device, it is probably the card itself. Unfortunately, these things do fail from
time-to-time. To be sure, insert any other available SDcard and try to restart. If the error indication changes to
something else, it is probably a failure of the SDcard. Sadly, you will need to obtain a new one and initialize it with
the files that are in the SD directory of the GitHub project. All historical data is lost and you will need to reconfigure
the device as if were new.

22.6.5 red-red-red

This is a catch-all panic code, where the firmware has detected a situation that should not happen, or is impossible
to deal with. Possibly there will be some diagnostic clues in the message log, or it may require connecting a serial
terminal to the USB port to obtain further diagnostics. Problems in this category are beyond the scope of this document.

22.6.6 green-red-red-red

The config.txt file was not found on the SDcard. Possibly the SDcard has been damaged, or the file was inadvertently
deleted. The card must be removed, examined in another computer, and a new config.txt file provided.

22.6.7 green-red-red-green

The config.txt file format is invalid (not valid Json) and could not be used. This could be the result of editing the file
improperly, or an error in saving the configuration. It may be possible to repair the file by mounting the SDcard in
another computer and using a Json linter to find the errors. Otherwise, it may be necessary to replace the config.txt
file.

22.6. Led Sequences 103

IoTaWatt Documentation, Release 02_03_20

104 Chapter 22. Troubleshooting

CHAPTER 23

iotawatt.local

23.1 How does it work?

The IoTaWatt connects to your local area network via WiFi. The procedure for connecting is outlined here. When
your router accepts the connection, it assigns an IP address and necessary routing information to the IoTaWatt using
the Dynamic Host Configuration Protocol (DHCP). Depending on your router settings, that IP address will either be a
fixed local IP address, or a semi-random IP address chosen from a pool of available addresses.

When you enter iotawatt.local into your browser, your computer uses one of several similar zeroconf protocols to
discover the IP address that has been assigned to the IoTaWatt. These protocols go under several names: Bonjour
(Apple) and LLMNR (Microsoft). See the zeroconf link for the detailed WiKi.

Essentially, when you type iotawatt.local intro your browser, the underlying networking layer in your computer broad-
casts a datagram message available to all members of the LAN, asking if there is anyone out there that called iotawatt.

At startup, IoTaWatt creates a process that listens for those datagrams. When it hears it’s name, it responds to the
sender saying “I’m iotawatt and my IP address is xx.xx.xx.xx”. The requestor makes a note of this address and uses it
to send subsequent transactions to iotawatt.local.

23.2 How does that not work?

Sounds simple doesn’t it? What could possibly go wrong?

Plenty. First off, these zeroconf protocols are not part of the standardized internet. If your computer doesn’t have some
version of the protocol installed, it won’t work.

There are other issues. Remember that your computer resolves the name and then stores the IP for future use? Well,
if the IoTaWatt gets assigned an IP address from a pool of addresses, it can change without your computer knowing
it. That is a common problem. Your computer can talk to the IoTaWatt for days or weeks and then suddenly it stops.
It’s possible the IoTaWatt restarted or it’s DHCP lease expired and it got a different IP address. Some computers will
simply never think to broadcast a new query, insisting on unsuccessfully retrying the old IP address forever.

105

connectWiFi.html
https://en.wikipedia.org/wiki/Zero-configuration_networking
https://en.wikipedia.org/wiki/Zero-configuration_networking

IoTaWatt Documentation, Release 02_03_20

23.3 How to make it work better.

It is recommended that you to assign a static IP to the IoTaWatt right after installation. You do this in your router and
should assign an IP address that is not in the DHCP pool, so there is no opportunity for conflict. Your router associates
the specified IP address with the MAC address of the IoTaWatt and always gives it that address during the DHCP
handshake at startup. Write it down. If you subsequently find that you can’t access via iotawatt.local, you can use the
IP address by typing HTTP://xx.xx.xx.xx as a URL in the browser.

If you are reading this because you didn’t assign a static IP and now can’t access your IoTaWatt with iotawatt.local,
you may need to turn off your computer and the IoTaWatt, restart your router, then restart your computer and the
IoTaWatt.

23.4 What else?

Throughout this section, we have been using the name iotawatt.local. If you changed the name of the IoTaWatt using
the Device setup of the configuration app, you would appended .local to that name. If you changed the name to
ttawatoi you would use ttawatoi.local.

23.5 The last word

Fix the IP and write it down.

106 Chapter 23. iotawatt.local

HTTP://xx.xx.xx.xx

	Quickstart
	Installation
	Software vs. Hardware
	Components
	Voltage and Frequency
	Connections

	Connecting to WiFi
	Purpose
	New connection
	Resetting WiFi to Defaults

	Device Configuration
	Device name
	TimeZone
	Auto-update Class

	Voltage Transformer Configuration
	VT Model Selection
	Voltage Calibration

	Configuring Power Channels (CTs)
	What is a power channel?
	Connecting the CTs
	Configuring the Input Channels
	Generic CT
	Enable derived three-phase

	Device Status Display
	Overview
	Inputs/Outputs
	Statistics
	Web Servers
	Data Logs

	Outputs
	Adding a new Output

	Web Servers
	Sending Data to a Web Service
	PVoutput
	influxDB
	Emoncms

	PVoutput
	Create a PVoutput Account
	Add Your System
	Configure IoTaWatt
	Reload History

	Emoncms
	Setup Emoncms
	Configure IoTaWatt
	Customizing Input data

	influxDB
	Configure IoTaWatt
	tag-set
	measurements
	Variables

	Three-phase Power
	Configuring Direct Reference
	Configuring Derived Reference
	Reporting Power

	CT Basics
	What is a Current Transformer?
	Types of CTs
	Installation
	Polarity
	Single and three-phase systems
	Split-phase systems
	240V Split-phase circuits

	Split-Phase Installation
	What is split-phase?
	Split-phase load centers
	Monitoring split phase
	Voltage Reference
	Mains CT orientation
	Load CT orientation

	Data Visualization
	Graph+
	Original Graph

	Graph+
	Unit/Source selector
	Time period selector
	Graph window
	Trace tables and options
	Saving Graphs
	Running Directly with URL
	Reset

	Original Graph
	File Manager and Editor
	IoTaWatt file systems
	File Manager
	Downloading Files
	Uploading Files
	SPIFFS
	ACE Editor

	Query API
	Overview
	Query types
	query?show
	query?select
	time specifiers
	Responses

	Message Log
	Troubleshooting
	Led Indicator
	Dull Green Glow
	Dull Red Glow
	Not Illuminated
	Continuous Red-Green-Red-Green…..
	Led Sequences

	iotawatt.local
	How does it work?
	How does that not work?
	How to make it work better.
	What else?
	The last word

